Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 13(5): 3102-3119, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35774313

RESUMO

The spatial and angular organization of biological macromolecules is a key determinant, as well as informative readout, of their function. Correlative imaging of the dynamic spatio-angular architecture of cells and organelles is valuable, but remains challenging with current methods. Correlative imaging of spatio-angular dynamics requires fast polarization-, depth-, and wavelength-diverse measurement of intrinsic optical properties and fluorescent labels. We report a multimodal instant polarization microscope (miPolScope) that combines a broadband polarization-resolved detector, automation, and reconstruction algorithms to enable label-free imaging of phase, retardance, and orientation, multiplexed with fluorescence imaging of concentration, anisotropy, and orientation of molecules at diffraction-limited resolution and high speed. miPolScope enabled multimodal imaging of myofibril architecture and contractile activity of beating cardiomyocytes, cell and organelle architecture of live HEK293T and U2OS cells, and density and anisotropy of white and grey matter of mouse brain tissue across the visible spectrum. We anticipate these developments in joint quantitative imaging of density and anisotropy to enable new studies in tissue pathology, mechanobiology, and imaging-based screens.

2.
Science ; 375(6585): eabi6983, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35271311

RESUMO

Elucidating the wiring diagram of the human cell is a central goal of the postgenomic era. We combined genome engineering, confocal live-cell imaging, mass spectrometry, and data science to systematically map the localization and interactions of human proteins. Our approach provides a data-driven description of the molecular and spatial networks that organize the proteome. Unsupervised clustering of these networks delineates functional communities that facilitate biological discovery. We found that remarkably precise functional information can be derived from protein localization patterns, which often contain enough information to identify molecular interactions, and that RNA binding proteins form a specific subgroup defined by unique interaction and localization properties. Paired with a fully interactive website (opencell.czbiohub.org), our work constitutes a resource for the quantitative cartography of human cellular organization.


Assuntos
Mapeamento de Interação de Proteínas , Proteínas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Sistemas CRISPR-Cas , Análise por Conglomerados , Conjuntos de Dados como Assunto , Corantes Fluorescentes , Células HEK293 , Humanos , Imunoprecipitação , Aprendizado de Máquina , Espectrometria de Massas , Microscopia Confocal , Proteínas de Ligação a RNA/metabolismo , Análise Espacial
3.
Cell ; 184(9): 2503-2519.e17, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33838111

RESUMO

A general approach for heritably altering gene expression has the potential to enable many discovery and therapeutic efforts. Here, we present CRISPRoff-a programmable epigenetic memory writer consisting of a single dead Cas9 fusion protein that establishes DNA methylation and repressive histone modifications. Transient CRISPRoff expression initiates highly specific DNA methylation and gene repression that is maintained through cell division and differentiation of stem cells to neurons. Pairing CRISPRoff with genome-wide screens and analysis of chromatin marks establishes rules for heritable gene silencing. We identify single guide RNAs (sgRNAs) capable of silencing the large majority of genes including those lacking canonical CpG islands (CGIs) and reveal a wide targeting window extending beyond annotated CGIs. The broad ability of CRISPRoff to initiate heritable gene silencing even outside of CGIs expands the canonical model of methylation-based silencing and enables diverse applications including genome-wide screens, multiplexed cell engineering, enhancer silencing, and mechanistic exploration of epigenetic inheritance.


Assuntos
Sistemas CRISPR-Cas , Reprogramação Celular , Epigênese Genética , Epigenoma , Edição de Genes , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/citologia , Diferenciação Celular , Ilhas de CpG , Metilação de DNA , Inativação Gênica , Código das Histonas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...