Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36296795

RESUMO

Microtube-like porous carbon (MPC) and tube-like porous carbon-sulfur (MPC-S) composites were synthesized by carbonizing milkweed pappus with sulfur, and they were used as cathodes for lithium-sulfur batteries. The morphology and uniformity of these materials were characterized using X-ray powder diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy with an energy-dispersive X-ray analyzer, thermogravimetric analysis, and X-ray photoelectron spectrometry. The electrochemical performance of the MPC-S cathodes was measured using the charge/discharge cycling performance, C rate, and AC impedance. The composite cathodes with 93.8 wt.% sulfur exhibited a stable specific capacity of 743 mAh g-1 after 200 cycles at a 0.5 C.

2.
Nat Commun ; 12(1): 39, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397916

RESUMO

The realisation of fast-charging lithium-ion batteries with long cycle lifetimes is hindered by the uncontrollable plating of metallic Li on the graphite anode during high-rate charging. Here we report that surface engineering of graphite with a cooperative biphasic MoOx-MoPx promoter improves the charging rate and suppresses Li plating without compromising energy density. We design and synthesise MoOx-MoPx/graphite via controllable and scalable surface engineering, i.e., the deposition of a MoOx nanolayer on the graphite surface, followed by vapour-induced partial phase transformation of MoOx to MoPx. A variety of analytical studies combined with thermodynamic calculations demonstrate that MoOx effectively mitigates the formation of resistive films on the graphite surface, while MoPx hosts Li+ at relatively high potentials via a fast intercalation reaction and plays a dominant role in lowering the Li+ adsorption energy. The MoOx-MoPx/graphite anode exhibits a fast-charging capability (<10 min charging for 80% of the capacity) and stable cycling performance without any signs of Li plating over 300 cycles when coupled with a LiNi0.6Co0.2Mn0.2O2 cathode. Thus, the developed approach paves the way to the design of advanced anode materials for fast-charging Li-ion batteries.

3.
ACS Appl Mater Interfaces ; 7(12): 7016-24, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25757158

RESUMO

The reversible capacity of Chevrel Mo6S8 cathode can be increased by the simple addition of the Cu metal to Mo6S8 electrodes. However, the exact reaction mechanism of the additional reversible capacity for the Mo6S8 and Cu mixture cathode has not been clearly understood yet. To clarify this unusual behavior, we synthesize a novel Cu nanoparticle/graphene composite for the preparation of the mixture electrode. We thoroughly investigate the electrochemical behaviors of the Mo6S8 and Cu mixture cathode with the relevant structural verifications during Mg(2+) insertion and extraction. The in situ formation of Cu(x)Mo6S8 is observed, indicating the spontaneous electrochemical insertion of Cu to the Mo6S8 host from the Cu nanoparticle/graphene composite. The reversible electrochemical replacement reaction of Cu in the Mo6S8 structure is clarified with the direct evidence for the solid state Cu deposition/dissolution at the surface of Mo6S8 particles. Moreover, the Mo6S8 and Cu mixture cathode improves the rate capability compared to the pristine. We believe that our finding will contribute to understanding the origin of the additional capacity of the Mo6S8 cathode arising from Cu addition and improve the electrochemical performance of the Mo6S8 cathode for rechargeable Mg batteries.

4.
ACS Appl Mater Interfaces ; 7(15): 8319-29, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25822879

RESUMO

A thin, uniform, and highly stable protective layer tailored using tris(trimethylsilyl) phosphite (TMSP) with a high tendency to donate electrons is formed on the Li-rich layered cathode, Li1.17Ni0.17Mn0.5Co0.17O2. This approach inhibits severe electrolyte decomposition at high operating voltages during cycling and dramatically improves the interfacial stability of the cathode. The TMSP additive in the LiPF6-based electrolyte is found to preferentially eliminate HF, which promotes the dissolution of metal ions from the cathode. Our investigation revealed that the TMSP-derived surface layer can overcome the significant capacity fading of the Li-rich cathode by structural instability ascribed to an irreversible phase transformation from layered to spinel-like structures. Moreover, the superior rate capability of the Li-rich cathode is achieved because the TMSP-originated surface layer allows facile charge transport at high C rates for the lithiation process.

5.
ChemSusChem ; 7(11): 3138-44, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25208971

RESUMO

Lithium-ion hybrid capacitors have attracted great interest due to their high specific energy relative to conventional electrical double-layer capacitors. Nevertheless, the safety issue still remains a drawback for lithium-ion capacitors in practical operational environments because of the use of metallic lithium. Herein, single-phase Li5FeO4 with an antifluorite structure that acts as an alternative lithium source (instead of metallic lithium) is employed and its potential use for lithium-ion capacitors is verified. Abundant Li(+) amounts can be extracted from Li5FeO4 incorporated in the positive electrode and efficiently doped into the negative electrode during the first electrochemical charging. After the first Li(+) extraction, Li(+) does not return to the Li5FeO4 host structure and is steadily involved in the electrochemical reactions of the negative electrode during subsequent cycling. Various electrochemical and structural analyses support its superior characteristics for use as a promising lithium source. This versatile approach can yield a sufficient Li(+)-doping efficiency of >90% and improved safety as a result of the removal of metallic lithium from the cell.


Assuntos
Fontes de Energia Elétrica , Ferro/química , Lítio/química , Eletrodos , Óxidos/química
6.
ACS Appl Mater Interfaces ; 6(6): 4063-73, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24559269

RESUMO

We present a promising electrolyte candidate, Mg(TFSI)2 dissolved in glyme/diglyme, for future design of advanced magnesium (Mg) batteries. This electrolyte shows high anodic stability on an aluminum current collector and allows Mg stripping at the Mg electrode and Mg deposition on the stainless steel or the copper electrode. It is clearly shown that nondendritic and agglomerated Mg secondary particles composed of ca. 50 nm primary particles alleviating safety concern are formed in glyme/diglyme with 0.3 M Mg(TFSI)2 at a high rate of 1C. Moreover, a Mg(TFSI)2-based electrolyte presents the compatibility toward a Chevrel phase Mo6S8, a radical polymer charged up to a high voltage of 3.4 V versus Mg/Mg(2+) and a carbon-sulfur composite as cathodes.

7.
Ultramicroscopy ; 108(10): 1256-9, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18550285

RESUMO

Aqueous-based LiFePO(4) pastes to fabricate the cathode of lithium-ion battery were investigated with an emphasis on chemical control of suspension component interactions among LiFePO(4) particulates, carbon black, carboxymethyl cellulose (CMC), and poly(acrylic acid) (PAA). The dispersion properties of LiFePO(4) were characterized using electroacoustic, flow behavior and green microstructural observation. Correlation was made between the dispersion properties and electrochemical performance of the particles. It was found that the addition of PAA significantly decreases the viscosity of the LiFePO(4) paste. The decrease of viscosity leads to increasing the solid concentration, which affects the electrochemical properties. The electrochemical characteristics of formulated pastes were evaluated using coin-type half cells. Although there is no significant difference between coin cells fabricated with CMC only and CMC/PAA combination in electrochemical cycling test, the dispersion properties of pastes indicate that the electrode fabricated with CMC/PAA, potentially, has much improved discharge capacity compared to that with CMC alone because of the possibility to increase active mass portion in electrode paste.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...