Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinspir Biomim ; 17(2)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34911054

RESUMO

Biological musculature employs variable recruitment of muscle fibers from smaller to larger units as the load increases. This orderly recruitment strategy has certain physiological advantages like minimizing fatigue and providing finer motor control. Recently fluidic artificial muscles (FAM) are gaining popularity as actuators due to their increased efficiency by employing bio-inspired recruitment strategies such as active variable recruitment (AVR). AVR systems use a multi-valve system (MVS) configuration to selectively recruit individual FAMs depending on the load. However, when using an MVS configuration, an increase in the number of motor units in a bundle corresponds to an increase in the number of valves in the system. This introduces greater complexity and weight. The objective of this paper is to propose, analyze, and demonstrate an orderly recruitment valve (ORV) concept that enables orderly recruitment of multiple FAMs in the system using a single valve. A mathematical model of an ORV-controlled FAM bundle is presented and validated by experiments performed on a proof-of-concept ORV experiment. The modeling is extended to explore a case study of a 1-DOF robot arm system consisting of an electrohydraulic pressurization system, ORV, and a FAM-actuated rotating arm plant and its dynamics are simulated to further demonstrate the capabilities of an ORV-controlled closed-loop system. An orderly recruitment strategy was implemented through a model-based feed forward controller. To benchmark the performance of the ORV, a conventional MVS with equivalent dynamics and controller was also implemented. Trajectory tracking simulations on both the systems revealed lower tracking error for the ORV controlled system compared to the MVS controlled system due to the unique cross-flow effects present in the ORV. However, the MVS, due to its independent and multiple valve setup, proved to be more adaptable for performance. For example, modifications to the recruitment thresholds of the MVS demonstrated improvement in tracking error, albeit with a sacrifice in efficiency. In the ORV, tracking performance remained insensitive to any variation in recruitment threshold. The results show that compared to the MVS, the ORV offers a simpler and more compact valving architecture at the expense of moderate losses in control flexibility and performance.


Assuntos
Membros Artificiais , Músculo Esquelético , Fibras Musculares Esqueléticas , Músculo Esquelético/fisiologia
2.
ACS Appl Mater Interfaces ; 10(14): 11768-11775, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29557167

RESUMO

We investigate the effect of variable uniaxial tensile strain on the evolution of 71° ferroelastic domains in (001)-oriented epitaxial BiFeO3 (BFO) thin films using piezoresponse force microscopy (PFM). For this purpose, a newly designed bending stage has been employed, which allows tensile bending as wells as in situ PFM characterization. In situ PFM imaging reveals polarization-strain correlations at the nanoscale. Specifically, ferroelastic domains with in-plane polarization along the direction of applied tensile strain expand, whereas the adjoining domains with orthogonal in-plane polarization contract. The switching is mediated by significant domain wall roughening and opposite displacement of the successive walls. Further, the domains with long-range order are more susceptible to an applied external mechanical stimulus compared to the domains, which exhibit short-range periodicity. In addition, the imprint state of film reverses direction under applied tensile strain. Finally, the strain-induced changes in the domain structure and wall motion are fully reversible and revert to their as-grown state upon release of the applied stress. The strain-induced non-180° polarization rotation constitutes a route to control connected functionalities, such as magnetism, via coupled in-plane rotation of the magnetic plane in multiferroic BFO thin films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...