Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38931381

RESUMO

Policosanol is a mixture of long-chain aliphatic alcohols (LCAAs) derived from various plant and insect origins that are marketed by various companies with distinct formulations and brand names. Policosanols offer several beneficial effects to treat dyslipidemia and hypertension; however, a comprehensive functionality comparison of various policosanol brands has yet to be thoroughly explored. In the present study five distinct policosanol brands from different origins and countries, Raydel-policosanol, Australia (PCO1), Solgar-policosanol, USA (PCO2), NutrioneLife-monacosanol, South Korea (PCO3), Mothernest-policosanol, Australia (PCO4), and Peter & John-policosanol, New Zealand (PCO5) were compared via dietary supplementation (1% in diet, final wt/wt) to zebrafish for six weeks to investigate their impact on survivability, blood lipid profile, and functionality of vital organs under the influence of a high-cholesterol diet (HCD, final 4%, wt/wt). The results revealed that policosanol brands (PCO1-PCO5) had a substantial preventive effect against HCD-induced zebrafish body weight elevation and hyperlipidemia by alleviating total cholesterol (TC) and triglycerides (TG) in blood. Other than PCO3, all the brands significantly reduced the HCD's elevated low-density lipoprotein cholesterol (LDL-C). On the contrary, only PCO1 displayed a significant elevation in high-density lipoprotein cholesterol (HDL-C) level against the consumption of HCD. The divergent effect of PCO1-PCO5 against HCD-induced hepatic damage biomarkers, aspartate aminotransferase (AST) and alanine aminotransferase (ALT), was observed. PCO1, PCO2, and PCO4 efficiently curtailed the AST and ALT levels; however, PCO3 and PCO5 potentially aggravated the HCD's elevated plasma AST and ALT levels. Consistently, the hepatic histology outcome revealed the least effectiveness of PCO3 and PCO5 against HCD-induced liver damage. On the contrary, PCO1 exhibited a substantial hepatoprotective role by curtailing HCD-induced fatty liver changes, cellular senescent, reactive oxygen species (ROS), and interleukin-6 (IL-6) production. Likewise, the histological outcome from the kidney, testis, and ovary revealed the significant curative effect of PCO1 against the HCD-induced adverse effects. PCO2-PCO5 showed diverse and unequal results, with the least effective being PCO3, followed by PCO5 towards HCD-induced kidney, testis, and ovary damage. The multivariate interpretation based on principal component analysis (PCA) and hierarchical cluster analysis (HCA) validated the superiority of PCO1 over other policosanol brands against the clinical manifestation associated with HCD. Conclusively, different brands displayed distinct impacts against HCD-induced adverse effects, signifying the importance of policosanol formulation and the presence of aliphatic alcohols on the functionality of policosanol products.

2.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675370

RESUMO

The present study compares sugarcane-wax purified policosanols sourced from Cuba (Raydel®) and China (BOC Sciences) and utilized following the synthesis of reconstituted high-density lipoproteins (rHDL). The two policosanols exhibited distinctly different ingredient ratios of long-chain aliphatic alcohols, particularly 1-octacosanol (C28) and 1-tetratriacotanol (C34). After synthesizing rHDL with apolipoprotein A-I (apoA-I), the two policosanols bound well with phospholipid and apoA-I to form the discoidal rHDL. Notably, rHDL-1, containing Cuban policosanol, displayed the largest particle diameter at approximately 78 ± 3 nm. In contrast, both control rHDL (rHDL-0) and rHDL containing Chinese policosanol (rHDL-2) exhibited smaller particles, with diameters of approximately 58 ± 3 nm and 61 ± 2 nm, respectively. Furthermore, rHDL-1 demonstrated enhanced anti-glycation activity, safeguarding apoA-I from degradation within HDL, and displayed the antioxidant ability to inhibit LDL oxidation. A microinjection of each rHDL into zebrafish embryos in the presence of carboxymethyllysine (CML) revealed rHDL-1 to have the strongest antioxidant activity with the highest embryo survivability and normal developmental morphology. Dermal application to recover the wound revealed rHDL-1 to have the highest wound-healing activity (75%) and survivability (92%) in the cutaneous wound area in the presence of CML. In adult zebrafish, injecting CML (250 µg) caused acute death and hyperinflammation, marked by heightened neutrophil infiltration and interleukin (IL)-6 production in liver. However, co-administering rHDL-1 notably increased survival (85%) and exhibited strong anti-inflammatory properties, reducing IL-6 production while improving the blood lipid profile. However, a co-injection of rHDL-2 resulted in the lowest survivability (47%) with more hepatic inflammation. In conclusion, Cuban policosanol (Raydel®) has more desirable properties for the in vitro synthesis of rHDL with stronger anti-glycation and antioxidant activities than those of Chinese policosanol (BOC Sciences). Moreover, Raydel-policosanol-integrated rHDL demonstrates a noteworthy effect on accelerated wound healing and robust anti-inflammatory properties, leading to increased survivability in zebrafish embryos and adults by effectively suppressing CML-induced hyperinflammation.

3.
Molecules ; 28(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37764386

RESUMO

Many policosanols from different sources, such as sugar cane and rice bran, have been marketed worldwide to improve blood lipid profiles. But so far, no comparative study has commenced elucidating the effect of different policosanols to improve the blood lipid profile and other beneficial effects. This study compared the efficacy of four different policosanols, including one sugar cane wax alcohol from Cuba (Raydel®) and three policosanols from China (Xi'an Natural sugar cane, Xi'an Realin sugar cane, and Shaanxi rice bran), to treat dyslipidemia in hyperlipidemic zebrafish. After 12 weeks of consumption of each policosanol (final 0.1% in diet, wt/wt) and a high-cholesterol diet (HCD, final 4%, wt/wt), the Raydel policosanol group and the Xi'an Natural policosanol group showed the highest survivability, of approximately 81%. In contrast, the Xi'an Realin policosanol and the Shaanxi policosanol groups showed 57% and 67% survivability, respectively. Among the five HCD groups, the Raydel policosanol group showed the lowest serum total cholesterol (TC, p < 0.001 versus HCD control) and triglyceride (p < 0.001 versus HCD control), with the highest percentage of high-density lipoproteins-cholesterol in TC. The Raydel policosanol group also showed the lowest serum aspartate aminotransferase and alanine aminotransferase levels, with the least infiltration of inflammatory cells and interleukin-6 production in hepatocytes with a marked reduction in reactive oxygen species (ROS) production and fatty liver changes. In the ovary, the Raydel policosanol group also showed the highest content of mature vitellogenic oocytes with the lowest production of reactive oxygen species and cellular apoptosis in ovarian cells. In the testes, the Raydel policosanol group also showed the healthiest morphology for spermatogenesis, with the lowest interstitial area and reactive oxygen species production in testicular cells. Conclusively, among the tested policosanols, Cuba (Raydel®) policosanol exhibited a comparatively better effect in maintaining zebrafish body weight, survivability, blood lipid profile, hepatic function biomarkers, fatty liver changes, ROS generation, inflammation, and restoration of the cell morphology in ovaries and testes affected by the HCD consumption.


Assuntos
Dislipidemias , Álcoois Graxos , Fígado Gorduroso , Animais , Feminino , Masculino , Colesterol , Dislipidemias/tratamento farmacológico , Fígado Gorduroso/tratamento farmacológico , Ovário , Espécies Reativas de Oxigênio , Testículo , Peixe-Zebra , Álcoois Graxos/farmacologia
4.
Molecules ; 28(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37764492

RESUMO

Reconstituted high-density lipoproteins (rHDL) containing each policosanol from Cuba (Raydel®), China (Shaanxi Pioneer), and the United States (Lesstanol®) were synthesized to compare the physiological properties of policosanol depending on sources and origin countries. After synthesis with apolipoproteinA-I (apoA-I) into rHDL, all policosanols bound well with phospholipid and apoA-I to form discoidal rHDL. An rHDL containing Cuban policosanol (rHDL-1) showed the largest rHDL particle size of around 83 ± 3 nm, while rHDL containing Chinese policosanol (rHDL-2) or American policosanol (rHDL-3) showed smaller particles around 63 ± 3 nm and 60 ± 2 nm in diameter, respectively. The rHDL-1 showed the strongest anti-glycation activity to protect the apoA-I degradation of HDL from fructose-mediated glycation: approximately 2.7-times higher ability to suppress glycation and 1.4-times higher protection ability of apoA-I than that of rHDL-2 and rHDL-3. The rHDL-1 showed the highest antioxidant ability to inhibit cupric ion-mediated LDL oxidation in electromobility and the quantification of oxidized species. A microinjection of each rHDL into a zebrafish embryo in the presence of carboxymethyllysine (CML) showed that rHDL-1 displayed the strongest anti-oxidant activity with the highest embryo survivability, whereas rHDL-2 and rHDL-3 showed much weaker protection ability, similar to rHDL alone (rHDL-0). An intraperitoneal injection of CML (250 µg) into adult zebrafish caused acute death and hyperinflammation with an elevation of infiltration of neutrophils and IL-6 production in the liver. On the other hand, a co-injection of rHDL-1 resulted in the highest survivability and the strongest anti-inflammatory ability to suppress IL-6 production with an improvement of the blood lipid profile, such as elevation of HDL-C and lowering of the total cholesterol, LDL-cholesterol, and triglyceride. In conclusion, Cuban policosanol exhibited the most desirable properties for the in vitro synthesis of rHDL with the stabilization of apoA-I, the largest particle size, anti-glycation against fructation, and antioxidant activities to prevent LDL oxidation. Cuban policosanol in rHDL also exhibited the strongest in vivo antioxidant and anti-inflammatory activities with the highest survivability in zebrafish embryos and adults via the prevention of hyperinflammation in the presence of CML.


Assuntos
Antioxidantes , Reação de Maillard , Animais , Antioxidantes/farmacologia , Peixe-Zebra , Apolipoproteína A-I , Interleucina-6 , Lipoproteínas HDL , Anti-Inflamatórios/farmacologia , Anticorpos
5.
Life (Basel) ; 13(6)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37374102

RESUMO

Policosanol consumption has been associated with treating blood pressure and dyslipidemia by increasing the level of high-density lipoproteins-cholesterol (HDL-C) and HDL functionality. Although policosanol supplementation also ameliorated liver function in animal models, it has not been reported in a human clinical study, particularly with a 20 mg doage of policosanol. In the current study, twelve-week consumption of Cuban policosanol (Raydel®) significantly enhanced the hepatic functions, showing remarkable decreases in hepatic enzymes, blood urea nitrogen, and glycated hemoglobin. From the human trial with Japanese participants, the policosanol group (n = 26, male 13/female 13) showed a remarkable decrease in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) from baseline up to 21% (p = 0.041) and 8.7% (p = 0.017), respectively. In contrast, the placebo group (n = 26, male 13/female 13) showed almost no change or slight elevation. The policosanol group showed a 16% decrease in γ-glutamyl transferase (γ-GTP) at week 12 from the baseline (p = 0.015), while the placebo group showed a 1.2% increase. The policosanol group exhibited significantly lower serum alkaline phosphatase (ALP) levels at week 8 (p = 0.012), week 12 (p = 0.012), and after 4-weeks (p = 0.006) compared to those of the placebo group. After 12 weeks of policosanol consumption, the ferric ion reduction ability and paraoxonase of serum were elevated by 37% (p < 0.001) and 29% (p = 0.004) higher than week 0, while placebo consumption showed no notable changes. Interestingly, glycated hemoglobin (HbA1c) in serum was lowered significantly in the policosanol group 4 weeks after consumption, which was approximately 2.1% (p = 0.004) lower than the placebo group. In addition, blood urea nitrogen (BUN) and uric acid levels were significantly lower in the policosanol group after 4 weeks: 14% lower (p = 0.002) and 4% lower (p = 0.048) than those of the placebo group, respectively. Repeated measures of ANOVA showed that the policosanol group had remarkable decreases in AST (p = 0.041), ALT (p = 0.008), γ-GTP (p = 0.016), ALP (p = 0.003), HbA1c (p = 0.010), BUN (p = 0.030), and SBP (p = 0.011) from the changes in the placebo group in point of time and group interaction. In conclusion, 12 weeks of 20 mg consumption of policosanol significantly enhanced hepatic protection by lowering the serum AST, ALT, ALP, and γ-GTP via a decrease in glycated hemoglobin, uric acid, and BUN with an elevation of serum antioxidant abilities. These results suggest that improvements in blood pressure by consumption of 20 mg of policosanol (Raydel®) were accompanied by protection of liver function and enhanced kidney function.

6.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834595

RESUMO

Policosanols from various sources, such as sugar cane, rice bran, and insects, have been marketed to prevent dyslipidemia, diabetes, and hypertension by increasing the blood high-density lipoproteins cholesterol (HDL-C) levels. On the other hand, there has been no study on how each policosanol influences the quality of HDL particles and their functionality. Reconstituted high-density lipoproteins (rHDLs) with apolipoprotein (apo) A-I and each policosanol were synthesized using the sodium cholate dialysis method to compare the policosanols in lipoprotein metabolism. Each rHDL was compared regarding the particle size and shape, antioxidant activity, and anti-inflammatory activity in vitro and in zebrafish embryos. This study compared four policosanols including one policosanol from Cuba (Raydel® policosanol) and three policosanols from China (Xi'an Natural sugar cane, Xi'an Realin sugar cane, and Shaanxi rice bran). The synthesis of rHDLs with various policosanols (PCO) from Cuba or China using a molar ratio of 95:5:1:1 with palmitoyloleoyl phosphatidylcholine (POPC): free cholesterol (FC): apoA-I:PCO (wt:wt) showed that rHDL containing Cuban policosanol (rHDL-1) showed the largest particle size and the most distinct particle shape. The rHDL-1 showed a 23% larger particle diameter and increased apoA-I molecular weight with a 1.9 nm blue shift of the maximum wavelength fluorescence than rHDL alone (rHDL-0). Other rHDLs containing Chinese policosanols (rHDL-2, rHDL-3, and rHDL-4) showed similar particle sizes with an rHDL-0 and 1.1-1.3 nm blue shift of wavelength maximum fluorescence (WMF). Among all rHDLs, the rHDL-1 showed the strongest antioxidant ability to inhibit cupric ion-mediated LDL oxidation. The rHDL-1-treated LDL showed the most distinct band intensity and particle morphology compared with the other rHDLs. The rHDL-1 also exerted the highest anti-glycation activity to inhibit the fructose-mediated glycation of human HDL2 with the protection of apoA-I from proteolytic degradation. At the same time, other rHDLs showed a loss of anti-glycation activity with severe degradation. A microinjection of each rHDL alone showed that rHDL-1 had the highest survivability of approximately 85 ± 3%, with the fastest developmental speed and morphology. In contrast, rHDL-3 showed the lowest survivability, around 71 ± 5%, with the slowest developmental speed. A microinjection of carboxymethyllysine (CML), a pro-inflammatory advanced glycated end product, into zebrafish embryos resulted in severe embryo death of approximately 30 ± 3% and developmental defects with the slowest developmental speed. On the other hand, the phosphate buffered saline (PBS)-injected embryo showed 83 ± 3% survivability. A co-injection of CML and each rHDL into adult zebrafish showed that rHDL-1 (Cuban policosanol) induced the highest survivability, around 85 ± 3%, while rHDL-0 showed 67 ± 7% survivability. In addition, rHDL-2, rHDL-3, and rHDL-4 showed 67 ± 5%, 62 ± 37, and 71 ± 6% survivability, respectively, with a slower developmental speed and morphology. In conclusion, Cuban policosanol showed the strongest ability to form rHDLs with the most distinct morphology and the largest size. The rHDL-containing Cuban policosanol (rHDL-1) showed the strongest antioxidant ability against LDL oxidation, anti-glycation activity to protect apoA-I from degradation, and the highest anti-inflammatory activity to protect embryo death under the presence of CML.


Assuntos
Antioxidantes , Saccharum , Animais , Humanos , Anti-Inflamatórios , Antioxidantes/metabolismo , Apolipoproteína A-I/metabolismo , Colesterol/metabolismo , Perda do Embrião , Etanol , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Saccharum/metabolismo , Álcoois Açúcares , Peixe-Zebra/metabolismo
7.
Front Nutr ; 10: 1297008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260075

RESUMO

Policosanol supplementation has been reported to increase high-density lipoprotein (HDL)-cholesterol (HDL-C). However, the association between Cuban policosanol supplementation and HDL cholesterol efflux capacity (CEC), an important function of HDL, remains unclear. We performed a lipoprotein analysis investigating 32 Japanese healthy participants (placebo, n = 17 or policosanol supplementation for 12 weeks, n = 15) from a randomized Cuban policosanol clinical trial. First, HDL CEC and HDL-related factors were measured before and after policosanol supplementation. Then, through electron microscopy after ultracentrifugation and high-performance liquid chromatography, HDL morphology and subclass were analyzed, respectively. Finally, the effects of policosanol supplementation regarding HDL function, HDL-related factors, and HDL morphology/component were examined. Cuban policosanol considerably increased the HDL CEC and HDL-C and apolipoprotein A-I (ApoA-I) levels. Furthermore, policosanol supplementation led to larger HDL particles, increased cholesterol content in larger HDL particles, and reduced triglyceride content in smaller HDL particles. In participants with high baseline HDL-C levels, the policosanol effects for HDL CEC are observed. HDL CEC fluctuation induced by policosanol was highly associated with HDL-C and ApoA-I changes. In conclusion, for the first time, we demonstrated that policosanol supplementation increased the HDL CEC in healthy participants.

8.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38256899

RESUMO

The current study compared three policosanols from Cuba (sugarcane, Raydel®, policosanol (1), China (rice bran, Shaanxi, policosanol (2), and the USA (sugarcane, Lesstanol®, policosanol (3) in the treatment of dyslipidemia and protection of the liver, ovary, and testis in hypercholesterolemic zebrafish. After twelve weeks of supplementation of each policosanol (PCO, final 0.1% in diet, w/w) with a high cholesterol diet (HCD, final 4%, w/w), the Raydel policosanol (PCO1) group showed the highest survivability, approximately 89%. In contrast, Shaanxi policosanol (PCO2) and Lesstanol policosanol (PCO3) produced 73% and 87% survivability, respectively, while the HCD alone group showed 75% survivability. In the 12th week, the PCO1 group demonstrated the most modest increase in body weight along with significantly lower levels of total cholesterol (TC) and triglycerides (TG) in comparison to the HCD control group. Additionally, the PCO1 group exhibited the highest proportion of high-density lipoprotein (HDL)-cholesterol within TC. Notably, the PCO1 group displayed the lowest level of aspartate aminotransferase and alanine aminotransferase, minimal infiltration of inflammatory cells, reduced interleukin (IL)-6 production in the liver, a notable decline in reactive oxygen species (ROS) generation and mitigated fatty liver changes. HCD supplementation induced impairment of kidney morphology with the greatest extent of ROS production and apoptosis. On the other hand, the PCO 1 group showed a remarkably improved morphology with the least ROS generation and apoptosis. Within the ovarian context, the PCO1 group exhibited the most substantial presence of mature vitellogenic oocytes, accompanied by minimal levels of ROS and apoptosis. Similarly, in the testicular domain, the PCO1 group showcased optimal morphology for spermatogenesis, characterized by the least interstitial area and diminished production of ROS in testicular cells. At week 8, the PCO1 group showed the highest egg-laying ability, with around 244 eggs produced per mating. In contrast, the HCD alone, PCO2, and PCO3 groups showed significantly lower egg-laying ability (49, 59, and 86 eggs, respectively). The embryos from the PCO1 group exhibited the highest survivability with the fastest swimming ability and developmental speed. These results suggest that PCO1 consumption significantly enhanced the reproduction system, egg-laying ability, and embryo survivability. In conclusion, among the three policosanols, Cuban (Raydel®) policosanol had the strongest effect on survivability, improving dyslipidemia, liver protection, kidney, ovary, and testis with a restoration of the cell morphology, and the least ROS production and apoptosis-induced by HCD supplementation.

9.
Braz. J. Pharm. Sci. (Online) ; 58: e19473, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1384023

RESUMO

Abstract RGX-365 is the main fraction of black ginseng conmprising protopanaxatriol (PPT)-type rare ginsenosides (ginsenosides Rg4, Rg6, Rh4, Rh1, and Rg2). No studies on the antiseptic activity of RGX-365 have been reported. High mobility group box 1 (HMGB1) is recognized as a late mediator of sepsis, and the inhibition of HMGB1 release and recovery of vascular barrier integrity have emerged as attractive therapeutic strategies for the management of sepsis. In this study, we examined the effects of RGX-365 on HMGB1-mediated septic responses and survival rate in a mouse sepsis model. RGX-365 was administered to the mice after HMGB1 challenge. The antiseptic activity of RGX-365 was assessed based on the production of HMGB1, measurement of permeability, and septic mouse mortality using a cecal ligation and puncture (CLP)-induced sepsis mouse model and HMGB1-activated human umbilical vein endothelial cells (HUVECs). We found that RGX-365 significantly reduced HMGB1 release from LPS- activated HUVECs and CLP-induced release of HMGB1 in mice. RGX-365 also restored HMGB1-mediated vascular disruption and inhibited hyperpermeability in the mice. In addition, treatment with RGX-365 reduced sepsis-related mortality in vivo. Our results suggest that RGX- 365 reduces HMGB1 release and septic mortality in vivo, indicating that it is useful in the treatment of sepsis.


Assuntos
Proteína HMGB1/análise , Panax/efeitos adversos , Permeabilidade , Sepse/patologia , Ginsenosídeos , Células Endoteliais da Veia Umbilical Humana/classificação , Anti-Infecciosos Locais/efeitos adversos
10.
J Microbiol ; 57(5): 388-395, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30721456

RESUMO

Streptomycetes naturally produce a variety of secondary metabolites, in the process of physiological differentiation. Streptomyces venezuelae differentiates into spores in liquid media, serving as a good model system for differentiation and a host for exogenous gene expression. Here, we report the growth and differentiation properties of S. venezuelae ATCC-15439 in liquid medium, which produces pikromycin, along with genome-wide gene expression profile. Comparison of growth properties on two media (SPA, MYM) revealed that the stationary phase cell viability rapidly decreased in SPA. Submerged spores showed partial resistance to lysozyme and heat, similar to what has been observed for better-characterized S. venezuelae ATCC10712, a chloramphenicol producer. TEM revealed that the differentiated cells in the submerged culture showed larger cell size, thinner cell wall than the aerial spores. We analyzed transcriptome profiles of cells grown in liquid MYM at various growth phases. During transition and/or stationary phases, many differentiationrelated genes were well expressed as judged by RNA level, except some genes forming hydrophobic coats in aerial mycelium. Since submerged spores showed thin cell wall and partial resistance to stresses, we examined cellular expression of MreB protein, an actin-like protein known to be required for spore wall synthesis in Streptomycetes. In contrast to aerial spores where MreB was localized in septa and spore cell wall, submerged spores showed no detectable signal. Therefore, even though the mreB transcripts are abundant in liquid medium, its protein level and/or its interaction with spore wall synthetic complex appear impaired, causing thinner- walled and less sturdy spores in liquid culture.


Assuntos
Macrolídeos/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Streptomyces/crescimento & desenvolvimento , Streptomyces/metabolismo , Parede Celular/fisiologia , Cloranfenicol/biossíntese , Perfilação da Expressão Gênica , Metabolismo Secundário/fisiologia , Streptomyces/citologia , Transcriptoma/genética
11.
J Biotechnol ; 219: 57-8, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26718561

RESUMO

Streptomyces venezuelae ATCC 15439, which produces 12- and 14-membered ring macrolide antibiotics, is a platform strain for heterologous expression of secondary metabolites. Its 9.05-Mb genome sequence revealed an abundance of genes involved in the biosynthesis of secondary metabolites and their precursors, which should be useful for the production of bioactive compounds.


Assuntos
Genoma Bacteriano , Análise de Sequência de DNA/métodos , Streptomyces/genética , Composição de Bases , Tamanho do Genoma , Metabolismo Secundário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA