Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 478(4): 861-873, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36107283

RESUMO

Given that mast cells are pivotal contributors to allergic diseases, various allergy treatments have been developed to inhibit them. Omalizumab, an anti-immunoglobulin E antibody, is a representative therapy that can alleviate allergy symptoms by inhibiting mast cell degranulation. However, omalizumab cannot reduce the proliferation and accumulation of mast cells, which is a fundamental cause of allergic diseases. c-Kit is essential for the proliferation, survival, and differentiation of mast cells. Excessive c-Kit activation triggers various mast cell diseases, such as asthma, chronic spontaneous urticaria, and mastocytosis. Herein, we generated 2G4, an anti-c-Kit antibody, to develop a therapeutic agent for mast cell diseases. The therapeutic efficacy of 2G4 antibody was evaluated in LAD2, a human mast cell line. 2G4 antibody completely inhibited c-Kit signaling by blocking the binding of stem cell factor, known as the c-Kit ligand. Inhibition of c-Kit signaling led to the suppression of proliferation, migration, and degranulation in LAD2 cells. Moreover, 2G4 antibody suppressed the secretion of pro-inflammatory cytokines, including granulocyte-macrophage colony-stimulating factor, vascular endothelial growth factor, C-C motif chemokine ligand 2, brain-derived neurotrophic factor, and complement component C5/C5a, which can exacerbate allergy symptoms. Taken together, these results suggest that 2G4 antibody has potential as a novel therapeutic agent for mast cell diseases.


Assuntos
Hipersensibilidade , Transtornos da Ativação de Mastócitos , Humanos , Mastócitos/metabolismo , Omalizumab/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Fator de Células-Tronco/metabolismo , Hipersensibilidade/metabolismo , Proliferação de Células , Degranulação Celular
2.
Anticancer Res ; 42(7): 3453-3461, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35790260

RESUMO

BACKGROUND/AIM: Cytotoxic payload conjugation to antibodies efficiently suppresses tumors and contributes to the improvement of cancer survival. In our previous study, c-Kit targeting antibody-drug conjugate (2G4-DM1) with DM1, a microtubule inhibitor, efficiently suppressed tumor growth. However, slow-growing c-Kit-positive tumors, such as GIST-48, did not efficiently respond to DM1. In this study, we aimed to treat tumors using 2G4 immunotoxin with Pseudomonas exotoxin A (PE) as a payload. MATERIALS AND METHODS: Modified FcBP-PE24 containing p-benzoyl-L-phenylalanine, unnatural amino acid, was expressed in E. coli and purified. Then, photoconjugation of 2G4 antibody and FcBP-PE24 at 365 nm was carried out and 2G4 immunotoxin was purified using anion exchange chromatography. In vitro cytotoxicity of 2G4 immunotoxins was assessed in HMC-1.2, GIST-48, and MDA-MB-453 cells. Then, in vivo efficacy analysis was performed using C.B-17 SCID mice. RESULTS: 2G4 immunotoxin efficiently induced cytotoxicity in 2G4-DM1-resistant HMC-1.2 and GIST-48 cells by inhibiting protein synthesis but not in c-Kit-negative MDA-MB-453 cells. The results showed ~200-fold or more increase in cytotoxicity against c-Kit-positive cells compared to IC50 of 2G4-DM1. In addition, 2G4 immunotoxin suppressed tumor growth in the in vivo xenograft mouse model. CONCLUSION: 2G4 immunotoxins could be an alternative therapeutic strategy for microtubule inhibitor- resistant cancer cells.


Assuntos
Tumores do Estroma Gastrointestinal , Imunoconjugados , Imunotoxinas , Animais , Escherichia coli , Humanos , Imunoconjugados/farmacologia , Imunotoxinas/farmacologia , Camundongos , Camundongos SCID
3.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216379

RESUMO

Lung cancer is the leading cause of cancer-related deaths. Small cell lung cancer (SCLC) accounts for 15-25% of all lung cancers. It exhibits a rapid doubling time and a high degree of invasiveness. Additionally, overexpression of c-Kit occurs in 70% of SCLC patients. In this study, we evaluated an antibody-drug conjugate (ADC) that targets c-Kit, which is a potential therapeutic agent for SCLC. First, we generated and characterized 4C9, a fully human antibody that targets c-Kit and specifically binds to SCLC cells expressing c-Kit with a binding affinity of KD = 5.5 × 10-9 M. Then, we developed an ADC using DM1, a microtubule inhibitor, as a payload. 4C9-DM1 efficiently induced apoptosis in SCLC with an IC50 ranging from 158 pM to 4 nM. An in vivo assay using a xenograft mouse model revealed a tumor growth inhibition (TGI) rate of 45% (3 mg/kg) and 59% (5 mg/kg) for 4C9-DM1 alone. Combination treatment with 4C9-DM1 plus carboplatin/etoposide or lurbinectedin resulted in a TGI rate greater than 90% compared with the vehicle control. Taken together, these results indicate that 4C9-DM1 is a potential therapeutic agent for SCLC treatment.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Imunoconjugados/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Animais , Carboplatina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Etoposídeo/farmacologia , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Maitansina/farmacologia , Camundongos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor ErbB-2/metabolismo , Carcinoma de Pequenas Células do Pulmão/metabolismo , Trastuzumab/farmacologia , Moduladores de Tubulina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
4.
Mol Oncol ; 16(6): 1290-1308, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34407310

RESUMO

c-Kit overexpression and activating mutations, which are reported in various cancers, including gastrointestinal stromal tumor (GIST), small-cell lung cancer (SCLC), acute myeloid leukemia, acral melanoma, and systemic mastocytosis (SM), confer resistance to tyrosine kinase inhibitors (TKIs). To overcome TKI resistance, an anti-c-Kit antibody-drug conjugate was developed in this study to treat wild-type and mutant c-Kit-positive cancers. NN2101, a fully human IgG1, was conjugated to DM1, a microtubule inhibitor, through N-succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC) (to give NN2101-DM1). The antitumor activity of NN2101-DM1 was evaluated in vitro and in vivo using various cancer cell lines. NN2101-DM1 exhibited potent growth-inhibitory activities against c-Kit-positive cancer cell lines. In a mouse xenograft model, NN2101-DM1 exhibited potent growth-inhibitory activities against imatinib-resistant GIST and SM cells. In addition, NN2101-DM1 exhibited a significantly higher anti-cancer effect than carboplatin/etoposide against SCLC cells where c-Kit does not mediate cancer pathogenesis. Furthermore, the combination of NN2101-DM1 with imatinib in imatinib-sensitive GIST cells induced complete remission compared with treatment with NN2101-DM1 or imatinib alone in mouse xenograft models. These results suggest that NN2101-DM1 is a potential therapeutic agent for wild-type and mutant c-Kit-positive cancers.


Assuntos
Tumores do Estroma Gastrointestinal , Imunoconjugados , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Animais , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Camundongos , Mutação/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores Proteína Tirosina Quinases/genética
5.
Pharmaceutics ; 13(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34452268

RESUMO

Stem cell factor (SCF) and its receptor, cKIT, are novel regulators of pathological neovascularization in the eye, which suggests that inhibition of SCF/cKIT signaling may be a novel pharmacological strategy for treating neovascular age-related macular degeneration (AMD). This study evaluated the therapeutic potential of a newly developed fully human monoclonal antibody targeting cKIT, NN2101, in a murine model of neovascular AMD. In hypoxic human endothelial cells, NN2101 substantially inhibited the SCF-induced increase in angiogenesis and activation of the cKIT signaling pathway. In a murine model of neovascular AMD, intravitreal injection of NN2101 substantially inhibited the SCF/cKIT-mediated choroidal neovascularization (CNV), with efficacy comparable to aflibercept, a vascular endothelial growth factor inhibitor. A combined intravitreal injection of NN2101 and aflibercept resulted in an additive therapeutic effect on CNV. NN2101 neither caused ocular toxicity nor interfered with the early retinal vascular development in mice. Ocular pharmacokinetic analysis in rabbits indicated that NN2101 demonstrated a pharmacokinetic profile suitable for intravitreal injection. These findings provide the first evidence of the potential use of the anti-cKIT blocking antibody, NN2101, as an alternative or additive therapeutic for the treatment of neovascular AMD.

6.
Int J Mol Sci ; 22(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200910

RESUMO

To increase the half-life of growth hormones, we proposed its long-lasting regulation through the ubiquitin-proteasome system (UPS). We identified lysine residues (K67, K141, and K166) that are involved in the ubiquitination of human growth hormone (hGH) using ubiquitination site prediction programs to validate the ubiquitination sites, and then substituted these lysine residues with arginine residues. We identified the most effective substituent (K141R) to prevent ubiquitination and named it AUT-hGH. hGH was expressed and purified in the form of hGH-His, and ubiquitination was first verified at sites containing K141 in the blood stream. Through the study, we propose that AUT-hGH with an increased half-life could be used as a long-lasting hGH in the blood stream.


Assuntos
Transtornos do Crescimento/tratamento farmacológico , Hormônio do Crescimento Humano/administração & dosagem , Hormônio do Crescimento Humano/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Animais , Citoplasma/metabolismo , Transtornos do Crescimento/metabolismo , Transtornos do Crescimento/patologia , Células HEK293 , Meia-Vida , Humanos , Masculino , Camundongos , Células NIH 3T3 , Ratos , Ratos Sprague-Dawley
7.
Int J Biol Macromol ; 159: 66-78, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32437800

RESUMO

CD117/c-kit, a tyrosine kinase receptor, plays a critical role in hematopoiesis, pigmentation, and fertility. The overexpression and activation of c-kit are thought to promote tumor growth and have been reported in various cancers, including leukemia, glioblastoma and mastocytosis. To disrupt the SCF/c-kit signaling axis in cancer, we generated a c-kit antagonist human antibody (NN2101) that binds to domain 2/3 of c-kit. This completely blocked the SCF-mediated phosphorylation of c-kit and inhibited TF-1 cell proliferation, erythroleukemia. In addition, the examination of binding affinity using surface plasmon resonance (SPR) assay showed that NN2101 can bind to c-kit of monkeys (KD = 2.92 × 10-10 M), rats (KD = 1.68 × 10-6 M), mice (KD = 11.5 × 10-9 M), and humans (KD = 2.83 × 10-12 M). We showed that NN2101 does not cause antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. The immunogenicity of NN2101 was similar to that of bevacizumab. Furthermore, the crystal structure of NN2101 Fab was determined and the structure of NN2101 Fab:c-kit complex was modeled. Structural information, as well as mutagenesis results, revealed that NN2101 can bind to the SCF-binding regions of c-kit. Collectively, we generated a c-kit neutralizing human antibody (NN2101) for the treatment of erythroleukemia and characterized its biophysical properties. NN2101 can potentially be used as a therapeutic antibody to treat different cancers.


Assuntos
Anticorpos Neutralizantes/imunologia , Antineoplásicos Imunológicos/imunologia , Proteínas Proto-Oncogênicas c-kit/imunologia , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/farmacologia , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacologia , Sítios de Ligação de Anticorpos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Epitopos/química , Epitopos/imunologia , Células HEK293 , Haplorrinos , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Ratos
8.
Cells ; 9(3)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164386

RESUMO

Atopic dermatitis (AD) is a multifactorial, heterogeneous disease associated with epidermal barrier disruption and intense systemic inflammation. Previously, we showed that exosomes derived from human adipose tissue-derived mesenchymal stem cells (ASC-exosomes) attenuate AD-like symptoms by reducing multiple inflammatory cytokine levels. Here, we investigated ASC-exosomes' effects on skin barrier restoration by analyzing protein and lipid contents. We found that subcutaneous injection of ASC-exosomes in an oxazolone-induced dermatitis model remarkably reduced trans-epidermal water loss, while enhancing stratum corneum (SC) hydration and markedly decreasing the levels of inflammatory cytokines such as IL-4, IL-5, IL-13, TNF-α, IFN-γ, IL-17, and TSLP, all in a dose-dependent manner. Interestingly, ASC-exosomes induced the production of ceramides and dihydroceramides. Electron microscopic analysis revealed enhanced epidermal lamellar bodies and formation of lamellar layer at the interface of the SC and stratum granulosum with ASC-exosomes treatment. Deep RNA sequencing analysis of skin lesions demonstrated that ASC-exosomes restores the expression of genes involved in skin barrier, lipid metabolism, cell cycle, and inflammatory response in the diseased area. Collectively, our results suggest that ASC-exosomes effectively restore epidermal barrier functions in AD by facilitating the de novo synthesis of ceramides, resulting in a promising cell-free therapeutic option for treating AD.


Assuntos
Tecido Adiposo/metabolismo , Ceramidas/biossíntese , Dermatite Atópica/tratamento farmacológico , Epiderme/metabolismo , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Ceramidas/metabolismo , Dermatite Atópica/patologia , Feminino , Humanos , Camundongos
9.
Sci Rep ; 10(1): 4446, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32157146

RESUMO

In a clinical trial of cerebral palsy, the level of plasma interleukin-8 (IL-8) was increased, correlated with motor improvement, after human umbilical cord blood mononuclear cell (hUCBC) infusion. This study aimed to elucidate the role of IL-8 in the therapeutic effects of hUCBCs in a mouse model of hypoxic-ischaemic brain injury (HI). In P7 HI mouse brains, hUCBC administration at day 7 after HI upregulated the gene expression of Cxcl2, the mouse IL-8 homologue and increased the expression of its receptor, CXCR2. hUCBC administration restored the sequential downstream signalling axis of p-p38/p-MAPKAPK2, NFκB, and angiogenic factors, which were downregulated by HI. An in vitro assay revealed the downregulation of the angiogenic pathway by CXCR2 knockdown and p38 inhibition. In vivo p38 inhibition prior to hUCBC administration in HI mouse brains produced identical results. Behavioural outcomes revealed a therapeutic effect (ps < 0.01) of hUCBC or IL-8 administration, which was correlated with decreases in infarct size and angiogenic findings in the striatum. In conclusion, the response of the host to hUCBC administration in mice upregulated Cxcl2, which led to the activation of the IL-8-mediated p-p38 signalling pathway. The upregulation of the downstream pathway and angiogenic growth factors via NFκB can be inferred to be the potential therapeutic mechanism of hUCBCs.


Assuntos
Lesões Encefálicas/terapia , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Células Endoteliais da Veia Umbilical Humana/citologia , Hipóxia-Isquemia Encefálica/terapia , Interleucina-8/metabolismo , Neovascularização Fisiológica , Animais , Animais Recém-Nascidos , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Leucócitos Mononucleares/citologia , Camundongos
10.
Biomaterials ; 220: 119408, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31394431

RESUMO

Aminoacyl-tRNA synthetase (ARS)-interacting multifunctional protein 1 (AIMP1) enhances the expression of proinflammatory cytokines. In our previous study, we have shown that serum AIMP1 in patients with SLE was significantly higher than that of healthy controls. To address whether neutralization of AIMP1 could ameliorate nephritis in lupus-prone mice, we generated atializumab, a humanized antibody against AIMP1 and investigated its therapeutic efficacy. ELISA showed that serum AIMP1 at 23 weeks old was significantly higher than that at 13 weeks old in lupus-prone mice. Therefore, lupus-prone mice were randomly assigned to 5 groups (vehicle, methylprednisolone and 0.5, 2, and 5 mg/kg atializumab). After treatment, disease severity was assessed using a variety of phenotypes, including proteinuria, histological damages, renal deposition of immune-complex. In addition, serum cytokines, anti-dsDNA and IgG subclasses were determined. T cell subsets were analyzed using a fluorescence-activated cell sorter. Atializumab significantly diminished proteinuria, improved glomerular and tubular damages and reduced the renal deposition of immune-complexes. Moreover, atializumab significantly decreased serum interferon (IFN)-γ, interleukin (IL)-17A, and IL-6, whereas it increased serum IL-10. Similarly, atializumab reduced the numbers of TH1, TH2 and TH17 cells in a dose-dependent manner, while atializumab enhanced the number of regulatory T (Treg) cells. Furthermore, atializumab decreased not only splenic plasma cells and serum anti-dsDNA but also pathogenic IgG subclasses for nephritis. It suppressed NF-κB activation by inhibiting IκBα degradation in a dose-dependent manner in vitro. Atializumab alleviated nephritis by inhibiting autoreactive T, B, and plasma cells and decreasing NF-κB-related proinflammatory cytokines in lupus-prone mice. These results suggest that treatment targeting AIMP1 could be a novel and highly immune-modulating therapeutic strategy in lupus nephritis.


Assuntos
Anticorpos/uso terapêutico , Citocinas/imunologia , Nefrite Lúpica/tratamento farmacológico , Animais , Anticorpos/farmacologia , Anticorpos/toxicidade , Afinidade de Anticorpos/imunologia , Complexo Antígeno-Anticorpo/metabolismo , Citocinas/sangue , DNA/imunologia , Humanos , Imunoglobulina G/sangue , Molécula 1 de Adesão Intercelular/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Rim/fisiopatologia , Nefrite Lúpica/sangue , Nefrite Lúpica/imunologia , Subpopulações de Linfócitos/efeitos dos fármacos , Subpopulações de Linfócitos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Baço/patologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
11.
Biomed Res Int ; 2019: 7508240, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31236412

RESUMO

We investigated whether serum aminoacyl-tRNA synthetase-interacting multifunctional protein-1 (AIMP1) could predict severe cases of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) based on the Birmingham vasculitis activity score (BVAS). Sixty-one patients with AAV were selected for inclusion from our prospective AAV cohort. AAV-specific indices and clinical manifestations were assessed, and laboratory tests were performed on the day of blood sampling. Patients with severe AAV were defined as those with a BVAS higher than the lower limit of the highest tertile of BVAS (BVAS ≥ 12). We measured serum AIMP1 levels of the stored serum samples. A total of 20 (32.8%) and 41 (67.2%) patients were classified as having severe and nonsevere AAV according to the cut-off of BVAS ≥ 12. Patients with severe AAV showed higher frequencies of general and renal manifestations, along with ANCA positivity, and exhibited a higher mean neutrophil count, erythrocyte sedimentation rate, and C-reactive protein levels, but lower mean haemoglobin and serum albumin levels than those with nonsevere AAV. The mean serum AIMP1 level in patients with severe AAV was significantly higher than that of patients with nonsevere AIMP1 (351.1 vs. 98.4 pg/mL, p = 0.006). Multivariate logistic regression analysis including variables showing significance in univariate analyses revealed that only serum AIMP1 exhibited a significant association with severe AAV (odds ratio 1.004, p = 0.031). When we set the optimal cut-off of serum AIMP1 for severe AAV to 50.28 pg/mL, patients with severe AAV more frequently had AIMP1 levels above the cut-off than those with nonsevere AAV (80.0% vs. 31.7%, relative risk 8.615, p < 0.001). The results from our study suggest that serum AIMP1 can be used to estimate the cross-sectional severe AAV population based on the BVAS.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/sangue , Anticorpos Anticitoplasma de Neutrófilos/sangue , Biomarcadores/sangue , Citocinas/sangue , Proteínas de Neoplasias/sangue , Proteínas de Ligação a RNA/sangue , Adulto , Idoso , Aminoacil-tRNA Sintetases/genética , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/genética , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/patologia , Anticorpos Anticitoplasma de Neutrófilos/genética , Sedimentação Sanguínea , Estudos Transversais , Feminino , Humanos , Rim/metabolismo , Rim/patologia , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Índice de Gravidade de Doença
12.
Int J Mol Sci ; 20(7)2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970566

RESUMO

The mammalian mediator complex subunit 28 (MED28) is overexpressed in a variety of cancers and it regulates cell migration/invasion and epithelial-mesenchymal transition. However, transcription factors that increase MED28 expression have not yet been identified. In this study, we performed a luciferase reporter assay to identify and characterize the prospective transcription factors, namely E2F transcription factor 1, nuclear respiratory factor 1, E-26 transforming sequence 1, and CCAAT/enhancer-binding protein ß, which increased MED28 expression. In addition, the release from the arrest at the G1-S or G2-M phase transition after cell cycle synchronization using thymidine or nocodazole, respectively, showed enhanced MED28 expression at the G1-S transition and mitosis. Furthermore, the overexpression of MED28 significantly decreased the duration of interphase and mitosis. Conversely, a knockdown of MED28 using si-RNA increased the duration of interphase and mitosis. Of note, the overexpression of MED28 significantly increased micronucleus and nuclear budding in HeLa cells. In addition, flow cytometry and fluorescence microscopy analyses showed that the overexpression of MED28 significantly increased aneuploid cells. Taken together, these results suggest that MED28 expression is increased by oncogenic transcription factors and its overexpression disturbs the cell cycle, which results in genomic instability and aneuploidy.


Assuntos
Instabilidade Genômica , Complexo Mediador/genética , Complexo Mediador/metabolismo , Fatores de Transcrição/metabolismo , Aneuploidia , Ciclo Celular/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Nocodazol/farmacologia , Regiões Promotoras Genéticas , Timidina/farmacologia , Regulação para Cima
13.
Sci Rep ; 8(1): 14638, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279543

RESUMO

This study identified microRNAs involved in myocardial infarction (MI) through a novel system-level approach using RNA sequencing data in an MI mouse model. This approach involved the extraction of DEGs and DEmiRs from RNA-seq data in sham and MI samples and the subsequent selection of two miRNAs: miR-30-5p (family) and miR-142a-5p, which were downregulated and upregulated in MI, respectively. Gene Set Enrichment Analysis (GSEA) using the predicted targets of the two miRNAs suggested that apoptosis is an essential gene ontology (GO)-associated term. In vitro functional assays using neonatal rat ventricular myocytes (NRVMs) demonstrated that miR-30-5p is anti-apoptotic and miR-142a-5p is pro-apoptotic. Luciferase assays showed that the apoptotic genes, Picalm and Skil, and the anti-apoptotic genes, Ghr and Kitl, are direct targets of miR-30-5p and miR-142a-5p, respectively. siRNA studies verified the results of the luciferase assays for target validation. The results of the system-level high throughput approach identified a pair of functionally antagonistic miRNAs and their targets in MI. This study provides an in-depth analysis of the role of miRNAs in the pathogenesis of MI which could lead to the development of therapeutic tools. The system-level approach could be used to identify miRNAs involved in variety of other diseases.


Assuntos
Apoptose/genética , MicroRNAs/fisiologia , Infarto do Miocárdio/genética , Miócitos Cardíacos/patologia , Animais , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Ratos Sprague-Dawley
14.
Stem Cell Res Ther ; 9(1): 187, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29996938

RESUMO

Exosomes are nano-sized vesicles (30-200 nm) constantly released by almost all cells. The ability of exosomes to travel between cells and deliver their cargo, which includes lipids, proteins, and nucleic acids, makes them an appealing cell-free therapy option to treat multiple diseases. Here, we investigated for the first time whether human adipose tissue-derived mesenchymal stem cell-derived exosomes (ASC-exosomes) can ameliorate atopic dermatitis (AD) in an in vivo mouse model. When injected either intravenously (IV) or subcutaneously (SC) into NC/Nga mice treated with house dust mite antigens, ASC-exosomes were found to reduce pathological symptoms such as clinical score, the levels of serum IgE, the number of eosinophils in blood, and the infiltration of mast cells, CD86+, and CD206+ cells in skin lesions. ASC-exosomes also significantly reduced mRNA expression of various inflammatory cytokines such as interleukin (IL)-4, IL-23, IL-31, and tumor necrosis factor-α (TNF-α) in AD skin lesions of Nc/Nga mice. Taken together, these results suggest that ASC-exosomes can be a novel promising cell-free therapeutic modality for AD treatment.


Assuntos
Tecido Adiposo/metabolismo , Dermatite Atópica/terapia , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Dermatite Atópica/patologia , Humanos
15.
Sci Rep ; 7(1): 17936, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263348

RESUMO

Stromal interaction molecule 1 (STIM1) along with Orai1 mediates extracellular Ca2+ entry into the cytosol through a store-operated Ca2+ entry (SOCE) mechanism in various tissues including skeletal muscle. However, the role(s) of STIM2, a homolog of STIM1, in skeletal muscle has not been well addressed. The present study, first, was focused on searching for STIM2-binding proteins from among proteins mediating skeletal muscle functions. This study used a binding assay, quadrupole time-of-flight mass spectrometry, and co-immunoprecipitation assay with bona-fide STIM2- and SERCA1a-expressing rabbit skeletal muscle. The region for amino acids from 453 to 729 of STIM2 binds to sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1a (SERCA1a). Next, oxalate-supported 45Ca2+-uptake experiments and various single-myotube Ca2+ imaging experiments using STIM2-knockdown mouse primary skeletal myotubes have suggested that STIM2 attenuates SERCA1a activity during skeletal muscle contraction, which contributes to the intracellular Ca2+ distribution between the cytosol and the SR at rest. In addition, STIM2 regulates Ca2+ movement through RyR1 during skeletal muscle contraction as well as SOCE. Therefore, via regulation of SERCA1a activity, STIM2 regulates both intracellular Ca2+ distribution and Ca2+ movement in skeletal muscle, which makes it both similar to, yet different from, STIM1.


Assuntos
Cálcio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Molécula 2 de Interação Estromal/fisiologia , Animais , Retículo Endoplasmático/metabolismo , Imunoprecipitação , Espectrometria de Massas , Camundongos , Camundongos Knockout , Contração Muscular , Fibras Musculares Esqueléticas/fisiologia , Coelhos , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Molécula 2 de Interação Estromal/metabolismo
16.
PLoS One ; 12(4): e0176071, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28426781

RESUMO

Pressure overload in the heart induces pathological hypertrophy and is associated with cardiac dysfunction. Apoptosis and fibrosis signaling initiated by the endoplasmic reticulum stress (ERS) is known to contribute to these maladaptive effects. The aim of this study was to investigate whether reduction of ERS by a known chemical chaperone, tauroursodeoxycholic acid (TUDCA) can attenuate pressure overload-induced cardiac remodeling in a mouse model of transverse aortic constriction (TAC). Oral administration of TUDCA at a dose of 300 mg/kg body weight (BW) in the TUDCA-TAC group reduced ERS markers (GRP78, p-PERK, and p-eIf2α), compared to the Vehicle (Veh)-TAC group. TUDCA administration, for 4 weeks after TAC significantly reduced cardiac hypertrophy as shown by the reduced heart weight (HW) to BW ratio, and expression of hypertrophic marker genes (ANF, BNP, and α-SKA). Masson's trichrome staining showed that myocardial fibrosis and collagen deposition were also significantly reduced in the TUDCA-TAC group. We also found that TUDCA significantly decreased expression of TGF-ß signaling proteins and collagen isoforms. TUDCA administration also reduced cardiac apoptosis and the related proteins in the TUDCA-TAC group. Microarray analysis followed by gene ontology (GO) and pathway analysis demonstrated that extracellular matrix genes responsible for hypertrophy and fibrosis, and mitochondrial genes responsible for apoptosis and fatty acid metabolism were significantly altered in the Veh-TAC group, but the alterations were normalized in the TUDCA-TAC group, suggesting potential of TUDCA in treatment of heart diseases related to pressure-overload.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ácido Tauroquenodesoxicólico/farmacologia , Remodelação Ventricular/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Chaperona BiP do Retículo Endoplasmático , Expressão Gênica , Masculino , Camundongos , Ácido Tauroquenodesoxicólico/administração & dosagem
17.
BMB Rep ; 50(4): 208-213, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27802840

RESUMO

Vascular endothelial growth factor (VEGF) is an essential cytokine that has functions in the formation of new blood vessels and regression of cardiac hypertrophy. VEGF/VEGF-receptor-1 (VEGFR1) signaling plays a key role in the regression of cardiac hypertrophy, whereas VEGF/VEGFR2 signaling leads to cardiac hypertrophy. In this study, we identified the prohypertrophic role of miR-374 using neonatal rat ventricular myocytes (NRVMs). Our results showed that overexpression of miR-374 activated G protein-coupled receptor-mediated prohypertrophic pathways by the inhibition of VEGFR1-dependent regression pathways. Luciferase assays revealed that miR-374 could directly target the 3'-untranslated regions of VEGFR1 and cGMP-dependent protein kinase-1. Collectively, these findings demonstrated that miR-374 was a novel pro-hypertrophic microRNA functioning to suppress the VEGFR1-mediated regression pathway. [BMB Reports 2017; 50(4): 208-213].


Assuntos
MicroRNAs/metabolismo , Transdução de Sinais , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Regiões 3' não Traduzidas , Animais , Antagomirs/metabolismo , Sequência de Bases , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Células Cultivadas , Proteína Quinase Dependente de GMP Cíclico Tipo I/antagonistas & inibidores , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Genes Reporter , Fatores de Transcrição MEF2/metabolismo , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fatores de Transcrição NFATC/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Alinhamento de Sequência , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
18.
FEBS Lett ; 591(1): 16-27, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27925653

RESUMO

Previously, a surgical regression model identified microRNA-101b (miR-101b) as a potential inhibitor of cardiac hypertrophy. Here, we investigated the antihypertrophic mechanism of miR-101b using neonatal rat ventricular myocytes. miR-101b markedly suppressed agonist-induced cardiac hypertrophy as shown by cell size and fetal gene expression. By systems biology approaches, we identified protein kinase C epsilon (PKCε) as the major target of miR-101b. Our results from qRT-PCR, western blot, and luciferase reporter assays confirm that PKCε is a direct target of miR-101b. In addition, we found that effectors downstream of PKCε (p-AKT, p-ERK1/2, p-NFAT, and p-GSK3ß) are also affected by miR-101b. Our study reveals a novel inhibitory mechanism for miR-101b as a negative regulator of cardiac hypertrophy.


Assuntos
Cardiomegalia/enzimologia , Cardiomegalia/patologia , MicroRNAs/metabolismo , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Proteína Quinase C-épsilon/metabolismo , Transdução de Sinais , Animais , Sequência de Bases , Cardiomegalia/genética , Endotelina-1/farmacologia , MicroRNAs/genética , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Proteína Quinase C-épsilon/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
19.
BMB Rep ; 49(4): 208-13, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26521941

RESUMO

Prolonged ER stress (ERS) can be associated with the induction of apoptotic cell death in various heart diseases. In this study, we searched for microRNAs affecting ERS in the heart using in silico and in vitro methods. We found that miR-185 directly targets the 3'-untranslated region of Na+/H+ exchanger-1 (NHE-1), a protein involved in ERS. Cardiomyocyte ERS-triggered apoptosis induced by 100 ng/ml tunicamycin (TM) or 1 µM thapsigargin (TG), ERS inducers, was significantly reduced by miR-185 overexpression. Protein expression of pro-apoptotic markers such as CCAAT/enhancer-binding protein homologous protein (CHOP) and cleaved-caspase-3 was also markedly reduced by miR-185 in a dose-dependent manner. Cariporide (20 µM), a pharmacological inhibitor of NHE-1, also attenuated ERS-induced apoptosis in cardiomyocytes and CHOP protein expression, suggesting that NHE-1 plays an important role in ERS-associated apoptosis in cardiomyocytes. Collectively, the present results demonstrate that miR-185 is involved in cardio- protection against ERS-mediated apoptotic cell death. [BMB Reports 2016; 49(4): 208-213].


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , MicroRNAs/metabolismo , Miocárdio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Apoptose/genética , Sequência de Bases , Sítios de Ligação , MicroRNAs/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ligação Proteica , Ratos , Trocador 1 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Trocadores de Sódio-Hidrogênio/genética
20.
Oncotarget ; 6(42): 44523-37, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26540344

RESUMO

The tumor suppressor protein p53 is unstable in quiescent cells and undergoes proteosomal degradation. Under conditions of cellular stress, p53 is rapidly stabilized by post-translational modification, thereby escaping degradation and translocating to the nucleus where it activates genes related to cell cycle arrest or apoptosis. Here, we report that the transcription elongation factor Ell3 sensitizes luminal type-cancer cell line, MCF7, which have wild-type p53, to the chemotherapeutic agent cis-diamminedichloroplatinum(II) (CDDP) by stabilizing p53. Overexpression of Ell3 in MCF7 cells suppressed the MDM2-mediated ubiquitin-dependent degradation pathway. In addition, Ell3 promoted binding of p53 to NADH quinone oxidoreductase 1, which is linked to the ubiquitin-independent degradation of p53. We found that Ell3 activates interleukin-20 (IL20) expression, which is linked to the ERK1/2 signaling pathway. Chemical inhibition of ERK1/2 signaling or molecular suppression of IL20 revealed that the ERK1/2 signaling pathway and IL20 are the main causes of p53 stabilization in Ell3-overexpressing MCF7 cells. These findings suggest that the ERK1/2 pathway can be targeted in the rational development of therapies to induce chemosensitization of breast cancer cells.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Cisplatino/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Células MCF-7 , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Estabilidade Proteica , Proteólise , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fatores de Elongação da Transcrição/genética , Transfecção , Proteína Supressora de Tumor p53/genética , Ubiquitinação , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...