Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosurg Case Lessons ; 3(24): CASE21683, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35733635

RESUMO

BACKGROUND: Maximal safe resection is the paramount objective in the surgical management of malignant brain tumors. It is facilitated through use of image-guided neuronavigation. Intraoperative image guidance systems use preoperative magnetic resonance imaging (MRI) as the navigational map. The accuracy of neuronavigation is limited by intraoperative brain shift and can become less accurate over the course of the procedure. Intraoperative MRI can compensate for dynamic brain shift but requires significant space and capital investment, often unavailable at many centers. OBSERVATIONS: The authors described a case in which an image fusion algorithm was used in conjunction with an intraoperative computed tomography (CT) system to compensate for brain shift during resection of a brainstem hemorrhagic melanoma metastasis. Following initial debulking of the hemorrhagic metastasis, intraoperative CT was performed to ascertain extent of resection. An elastic image fusion (EIF) algorithm was used to create virtual MRI relative to both the intraoperative CT scan and preoperative MRI, which facilitated complete resection of the tumor while preserving critical brainstem anatomy. LESSONS: EIF algorithms can be used with multimodal images (preoperative MRI and intraoperative CT) and create an updated virtual MRI data set to compensate for brain shift in neurosurgery and aid in maximum safe resection of malignant brain tumors.

2.
J Tissue Eng Regen Med ; 16(4): 367-379, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35113494

RESUMO

Aging hinders the effectiveness of regenerative medicine strategies targeting the repair of volumetric muscle loss (VML) injury. Anabolic steroids have been shown to improve several factors which contribute to the age-related decline in muscle's regenerative capacity. In this study, the impact of exogenous nandrolone decanoate (ND) administration on the effectiveness of a VML regenerative repair strategy was explored using an aged animal model. Unilateral tibialis anterior VML injuries were repaired in 18-month-aged animal models (male Fischer 344 rat) using decellularized human skeletal muscle scaffolds supplemented with autologous minced muscle. The contralateral limb was left untreated/uninjured. Following repair, ND(+) or a carrier control (ND-) was delivered via weekly injection for a period of 8 weeks. At 8 weeks, muscle isometric torque, gene expression, and tissue structure were assessed. ND(+) treatment did not improve contractile torque recovery following VML repair when compared to carrier only ND(-) injection controls. Peak isometric torque in the ND(+) VML repair group remained significantly below contralateral uninjured control values (4.69 ± 1.18vs. 7.46 ± 1.53 N mm/kg) and was statistically indistinguishable from carrier only ND(-) VML repair controls (4.47 ± 1.18 N mm/kg). Gene expression for key myogenic genes (Pax7, MyoD, MyoG, IGF-1) were not significantly elevated in response to ND injection, suggesting continued age related myogenic impairment even in the presence of ND(+) treatment. ND injection did reduce the histological appearance of fibrosis at the site of VML repair, and increased expression of the collagen III gene, suggesting some positive effects on repair site matrix regulation. Overall, the results presented in this study suggest that a decline in regenerative capacity with aging may present an obstacle to regenerative medicine strategies targeting VML injury and that the delivery of anabolic stimuli via ND administration was unable to overcome this decline.


Assuntos
Nandrolona , Regeneração , Animais , Suplementos Nutricionais , Modelos Animais de Doenças , Masculino , Músculo Esquelético/fisiologia , Nandrolona/farmacologia , Ratos
3.
Exp Physiol ; 106(4): 994-1004, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33600045

RESUMO

NEW FINDINGS: What is the central question of this study? Following large traumatic loss of muscle tissue (volumetric muscle loss; VML), permanent functional and cosmetic deficits present themselves and regenerative therapies alone have not been able to generate a robust regenerative response: how does the addition of rehabilitative therapies affects the regenerative response? What is the main finding and its importance? Using exercise along with autologous muscle repair, we demonstrated accelerated muscle force recovery response post-VML. The accentuated force recovery 2 weeks post-VML would allow patients to return home sooner than allowed with current therapies. ABSTRACT: Skeletal muscle can regenerate from damage but is overwhelmed with extreme tissue loss, known as volumetric muscle loss (VML). Patients suffering from VML do not fully recover force output in the affected limb. Recent studies show that replacement tissue (i.e., autograph) into the VML defect site plus physical activity show promise for optimizing force recovery post-VML. The purpose of this study was to measure the effects of autologous repair and voluntary wheel running on force recovery post-VML. Thirty-two male Sprague-Dawley rats had 20% of their left tibialis anterior (LTA) excised then replaced and sutured into the intact muscle (autologous repair). The right tibialis anterior (RTA) acted as the contralateral control. Sixteen rats were given free access to a running wheel (Wheel) whereas the other 16 remained in a cage with the running wheel locked (Sed). At 2 and 8 weeks post-VML, the LTA underwent force testing; then the muscle was removed and morphological and gene expression analysis was conducted. At 2 weeks post-injury, normalized LTA force was 58% greater in the Wheel group compared to the Sed group. At 8 weeks post-VML, LTA force was similar between the Wheel and Sed groups but was still lower than the uninjured RTA. Gene expression analysis at 2 weeks post-VML showed the wheel groups had lower mRNA content of interleukin (IL)-1ß, IL-6 and tumour necrosis factor α compared to the Sed group. Overall, voluntary wheel running promoted early force recovery, but was not sufficient to fully restore force. The accentuated early force recovery is possibly due to a more pro-regenerative microenvironment.


Assuntos
Atividade Motora , Regeneração , Animais , Modelos Animais de Doenças , Humanos , Masculino , Músculo Esquelético , Ratos , Ratos Sprague-Dawley , Regeneração/fisiologia
4.
Tissue Eng Part A ; 26(1-2): 3-14, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31064280

RESUMO

In this study, the influence of age on effectiveness of regenerative repair for the treatment of volumetric muscle loss (VML) injury was explored. Tibialis anterior (TA) VML injuries were repaired in both 3- and 18-month-old animal models (Fischer 344 rat) using allogeneic decellularized skeletal muscle (DSM) scaffolds supplemented with autologous minced muscle (MM) paste. Within the 3-month animal group, TA peak contractile force was significantly improved (79% of normal) in response to DSM+MM repair. However, within the 18-month animal group, muscle force following repair (57% of normal) was not significantly different from unrepaired VML controls (59% of normal). Within the 3-month animal group, repair with DSM+MM generally reduced scarring at the site of VML repair, whereas scarring and a loss of contractile tissue was notable at the site of repair within the 18-month group. Within 3-month animals, expression of myogenic genes (MyoD, MyoG), extracellular matrix genes (Col I, Col III, TGF-ß), and key wound healing genes (TNF-α and IL-1ß) were increased. Alternatively, expression was unchanged across all genes examined within the 18-month animal group. The findings suggest that a decline in regenerative capacity and increased fibrosis with age may present an obstacle to regenerative medicine strategies targeting VML injury. Impact Statement This study compared the recovery following volumetric muscle loss (VML) injury repair using a combination of minced muscle paste and decellularized muscle extracellular matrix carrier in both a younger (3 months) and older (18 months) rat population. Currently, VML repair research is being conducted with the young patient population in mind, but our group is the first to look at the effects of age on the efficacy of VML repair. Our findings highlight the importance of considering age-related changes in response to VML when developing repair strategies targeting an elderly patient population.


Assuntos
Músculo Esquelético/lesões , Doenças Musculares/terapia , Animais , Modelos Animais de Doenças , Masculino , Contração Muscular/fisiologia , Disfunção do Tendão Tibial Posterior/terapia , Ratos , Ratos Endogâmicos F344 , Regeneração/fisiologia
5.
Exp Gerontol ; 83: 37-46, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27435497

RESUMO

Termed volumetric muscle loss (VML), the bulk loss of skeletal muscle tissue either through trauma or surgery overwhelms the capacity for repair, leading to the formation of non-contractile scar tissue. The myogenic potential, along with other factors that influence wound repair are known to decline with age. In order to develop effective treatment strategies for VML injuries that are effective across a broad range of patient populations, it is necessary to understand how the response to VML injury is affected by aging. Towards this end, this study was conducted to compare the response of young and aged animal groups to a lower extremity VML injury. Young (3months, n=12) and aged (18months, n=8) male Fischer 344 rats underwent surgical VML injury of the tibialis anterior muscle. Three months after VML injury it was found that young TA muscle was on average 16% heavier than aged muscle when no VML injury was performed and 25% heavier when comparing VML treated young and aged animals (p<0.0001, p<0.0001). Peak contractile force for both the young and aged groups was found to decrease significantly following VML injury, producing 65% and 59% of the contralateral limbs' peak force, respectively (p<0.0001). However, there were no differences found for peak contractile force based on age, suggesting that VML affects muscle's ability to repair, regardless of age. In this study, we used the ratio of collagen I to MyoD expression as a metric for fibrosis vs. myogenesis. Decreasing fiber cross-sectional area with advancing age (p<0.005) coupled with the ratio of collagen I to MyoD expression, which increased with age, supports the thought that regeneration is impaired in the aged population in favor of fibrosis (p=0.0241). This impairment is also exacerbated by the contribution of VML injury, where a 77-fold increase in the ratio of collagen I to MyoD was observed in the aged group (p<0.0002). The aged animal model described in this study provides a tool for investigators exploring not only the development of VML injury strategies but also the effect of aging on muscle regeneration.


Assuntos
Fatores Etários , Contração Muscular , Músculo Esquelético/lesões , Músculo Esquelético/fisiopatologia , Animais , Peso Corporal , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Fibrose , Expressão Gênica , Modelos Lineares , Masculino , Proteína MyoD/metabolismo , Tamanho do Órgão , Ratos , Ratos Endogâmicos F344 , Regeneração
6.
Biotechnol Prog ; 32(3): 745-55, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26949076

RESUMO

The implantation of decellularized tissue has shown effectiveness as a strategy for the treatment of volumetric muscle loss (VML) injuries. The preparation of decellularized tissue typically relies on the diffusion driven removal of cellular debris. For bulky tissues like muscle, the process can be lengthy, which introduces opportunities for both tissue contamination and degradation of key ECM molecules. In this study we report on the accelerated preparation of decellularized skeletal muscle (DSM) scaffolds using a infusion system and examine scaffold performance for the repair of VML injuries. The preparation of DSM scaffolds using infusion was dramatically accelerated. As the infusion rate (1% SDS) was increased from 0.1 to 1 and 10ml/hr, the time needed to remove intracellular myoglobin and actin decreased from a maximum of 140 ± 3hrs to 45 ± 3hrs and 10 ± 2hrs respectively. Although infusion appeared to remove cellular debris more aggressively, it did not significantly decrease the collagen or glycosaminoglycan composition of DSM samples when compared to un-infused controls. Infusion prepared DSM samples retained the aligned network structure and mechanical integrity of control samples. Infusion prepared DSM samples supported the attachment and in-vitro proliferation of myoblast cells and was well tolerated by the host when examined in-vivo. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:745-755, 2016.


Assuntos
Reatores Biológicos , Músculo Esquelético/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...