Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7455, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978170

RESUMO

When a low-viscosity fluid displaces into a higher-viscosity fluid, the liquid-liquid interface becomes unstable causing finger-like patterns. This viscous fingering instability has been widely observed in nature and engineering systems with two adjoined fluids. Here, we demonstrate a hitherto-unrealizable viscous fingering in a single fluid-solid interface. In a single polyelectrolyte fluid on a charge selective surface, selective ion rejection through the surface initiates i) stepwise ion concentration and viscosity gradient boundaries in the fluid and ii) electroconvective vortices on the surface. As the vortices grow, the viscosity gradient boundary pushes away from the surface, resulting viscous fingering. Comparable to conventional one with two fluids, i) a viscosity ratio ([Formula: see text]) governs the onset of this electroconvective viscous fingering, and ii) the boundary properties (finger velocity and rheological effects) - represented by [Formula: see text], electric Rayleigh ([Formula: see text]), Schmidt ([Formula: see text]), and Deborah ([Formula: see text]) numbers - determine finger shapes (straight v.s. ramified, the onset length of fingering, and relative finger width). With controllable onset and shape, the mechanism of electroconvective viscous fingering offers new possibilities for manipulating ion transport and dendritic instability in electrochemical systems.

2.
J Nanosci Nanotechnol ; 13(9): 6016-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24205591

RESUMO

Here, the improved performance of organic field effect transistors (OFET) by doping inorganic nanoparticles into a semiconducting polymer as a channel layer is briefly reported. Nickel(II) oxide nanoparticle (NiOnp) was used as an inorganic dopant while regioregular poly(3-hexylthiophene) (P3HT) was used as a matrix polymer for the channel layer in the OFETs. The doping ratio of NiOnp was made 1 wt.% so that it would minimally influence the nanostructure of the P3HT channel layer. The results showed that the optical absorption spectrum of the P3HT film was slightly red-shifted by the NiOnp doping, which reflects the improved crystallinity of the P3HT domains in the P3HT:NiOnp films. The drain current of the OFETs with the P3HT:NiOnp films was significantly enhanced ca. three-to-seven fold by the NiOnp doping under appying gate voltages while the hole mobility of the OFETs P3HT:NiOnp films was improved as much as three fold by the NiOnp doping. The enhanced performance has been assigned to the role of NiOnp that has relatively higher hole mobility than the P3HT polymer.

3.
ACS Appl Mater Interfaces ; 4(10): 5300-8, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23027775

RESUMO

We investigated the dispersion effect of crystalline silicon nanoparticles (SiNP) on the performance and stability of organic solar cells with the bulk heterojunction (BHJ) films of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C(61)-butyric acid methyl ester (PC(61)BM). To improve the dispersion of SiNP in the BHJ films, we attached octanoic acid (OA) to the SiNP surface via esterification reaction and characterized it with Raman spectroscopy and high-resolution transmission electron microscopy. The OA-attached SiNP (SiNP-OA) showed improved dispersion in chlorobenzene without change of optical absorption, ionization potential and crystal nanostructure of SiNP. The device performance was significantly deteriorated upon high loading of SiNP (10 wt %), whereas relatively good performance was maintained without large degradation in the case of SiNP-OA. Compared to the control device (P3HT:PC(61)BM), the device performance was improved by adding 2 wt % SiNP-OA, but it was degraded by adding 2 wt % SiNP. In particular, the device stability (lifetime under short time exposure to 1 sun condition) was improved by adding 2 wt % SiNP-OA even though it became significantly decreased by adding 2 wt % SiNP. This result suggests that the dispersion of nanoparticles greatly affects the device performance and stability (lifetime).


Assuntos
Fulerenos/química , Nanopartículas/química , Polímeros/química , Silício/química , Energia Solar , Caprilatos/química , Tiofenos/química
4.
J Nanosci Nanotechnol ; 12(7): 5696-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22966636

RESUMO

We investigated the influence of nickel oxide (NiO) nanoparticles that are incorporated into the hole-collecting buffer layer [poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)] on the performance of polymer:fullerene solar cells. To understand the optimum composition of NiO nanoparticles, the composition of NiO nanoparticles was varied from 0 wt% to 23 wt%. Results showed that the optical transmittance was gradually decreased as the NiO content increased. However, the device performance (short circuit current density, fill factor, series resistance, power conversion efficiency) exhibited a two stage trend in a boundary of approximately 9 wt% NiO content. This trend was in good agreement with the trend of sheet resistance in the presence of slight discrepancy owing to the different charge transport geometry.

5.
ACS Appl Mater Interfaces ; 4(3): 1281-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22288534

RESUMO

We attempted to dope poly(3-hexylthiophene) (P3HT) with 2-ethylbenzenesulfonic acid (EBSA), which has good solubility in organic solvents, in order to improve the performance of organic field effect transistors (OFET). The EBSA doping ratio was varied up to 1.0 wt % because the semiconducting property of P3HT could be lost by higher level doping. The doping reaction was confirmed by the emerged absorption peak at the wavelength of ~970 nm and the shifted S2p peak (X-ray photoelectron spectroscopy), while the ionization potential and nanostructure of P3HT films was slightly affected by the EBSA doping. Interestingly, the EBSA doping delivered significantly improved hole mobility because of the greatly enhanced drain current of OFETs by the presence of the permanently charged parts in the P3HT chains. The hole mobility after the EBSA doping was increased by the factor of 55-86 times depending on the regioregularity at the expense of low on/off ratio in the case of unoptimized devices, while the optimized devices showed ~10 times increased hole mobility by the 1.0 wt % EBSA doping with the greatly improved on/off ratio even though the source and drain electrodes were made using relatively cheaper silver instead of gold.

6.
J Nanosci Nanotechnol ; 11(7): 5733-6, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22121599

RESUMO

We briefly report the effect of film thickness on the performance of hybrid polymer/polymer solar cells that were made using poly(3-hexylthiophene), poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT), and zinc oxide (ZnO) nanoparticles. The ZnO nanoparticles were introduced to improve the electron transport property of P3HT/F8BT blend films. Results showed that the open circuit voltage (V(OC)) was remarkably decreased by adding only approximately 0.5 wt% ZnO nanoparticles though the optical absorption spectra were not much changed due to the small amount of ZnO nanoparticles in the ternary blend films (approximately 1.9%). In contrast, the fill factor (FF) of devices was improved for the ternary blend devices with the ZnO nanoparticles due to the improved electron transport as evidenced by the reduced series resistance. The short circuit current density of devices was not much changed because of the enhanced charge transport. However, the addition of ZnO nanoparticles decreased the power conversion efficiency of devices owing to the larger influence of V(OC) compared to the FF improvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...