Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6691): 100-105, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574144

RESUMO

Phage viruses shape the evolution and virulence of their bacterial hosts. The Salmonella enterica genome encodes several stress-inducible prophages. The Gifsy-1 prophage terminase protein, whose canonical function is to process phage DNA for packaging in the virus head, unexpectedly acts as a transfer ribonuclease (tRNase) under oxidative stress, cleaving the anticodon loop of tRNALeu. The ensuing RNA fragmentation compromises bacterial translation, intracellular survival, and recovery from oxidative stress in the vertebrate host. S. enterica adapts to this transfer RNA (tRNA) fragmentation by transcribing the RNA repair Rtc system. The counterintuitive translational arrest provided by tRNA cleavage may subvert prophage mobilization and give the host an opportunity for repair as a way of maintaining bacterial genome integrity and ultimately survival in animals.


Assuntos
Endodesoxirribonucleases , Prófagos , Fagos de Salmonella , Salmonella enterica , Proteínas Virais , Animais , Endodesoxirribonucleases/metabolismo , Estresse Oxidativo , Prófagos/enzimologia , Prófagos/genética , RNA , RNA de Transferência , Salmonella enterica/genética , Salmonella enterica/virologia , Fagos de Salmonella/enzimologia , Fagos de Salmonella/genética , Proteínas Virais/metabolismo
2.
Cell Host Microbe ; 32(3): 411-424.e10, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38307020

RESUMO

Intracellular Salmonella experiencing oxidative stress downregulates aerobic respiration. To maintain cellular energetics during periods of oxidative stress, intracellular Salmonella must utilize terminal electron acceptors of lower energetic value than molecular oxygen. We show here that intracellular Salmonella undergoes anaerobic respiration during adaptation to the respiratory burst of the phagocyte NADPH oxidase in macrophages and in mice. Reactive oxygen species generated by phagocytes oxidize methionine, generating methionine sulfoxide. Anaerobic Salmonella uses the molybdenum cofactor-containing DmsABC enzymatic complex to reduce methionine sulfoxide. The enzymatic activity of the methionine sulfoxide reductase DmsABC helps Salmonella maintain an alkaline cytoplasm that supports the synthesis of the antioxidant hydrogen sulfide via cysteine desulfuration while providing a source of methionine and fostering redox balancing by associated dehydrogenases. Our investigations demonstrate that nontyphoidal Salmonella responding to oxidative stress exploits the anaerobic metabolism associated with dmsABC gene products, a pathway that has accrued inactivating mutations in human-adapted typhoidal serovars.


Assuntos
Metionina/análogos & derivados , NADPH Oxidases , Fagócitos , Animais , Camundongos , Humanos , Anaerobiose , Fagócitos/metabolismo , Metionina/metabolismo , Salmonella typhimurium/metabolismo , Respiração
3.
PLoS Biol ; 21(4): e3002051, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37014914

RESUMO

Detoxification, scavenging, and repair systems embody the archetypical antioxidant defenses of prokaryotic and eukaryotic cells. Metabolic rewiring also aids with the adaptation of bacteria to oxidative stress. Evolutionarily diverse bacteria combat the toxicity of reactive oxygen species (ROS) by actively engaging the stringent response, a stress program that controls many metabolic pathways at the level of transcription initiation via guanosine tetraphosphate and the α-helical DksA protein. Studies herein with Salmonella demonstrate that the interactions of structurally related, but functionally unique, α-helical Gre factors with the secondary channel of RNA polymerase elicit the expression of metabolic signatures that are associated with resistance to oxidative killing. Gre proteins both improve transcriptional fidelity of metabolic genes and resolve pauses in ternary elongation complexes of Embden-Meyerhof-Parnas (EMP) glycolysis and aerobic respiration genes. The Gre-directed utilization of glucose in overflow and aerobic metabolism satisfies the energetic and redox demands of Salmonella, while preventing the occurrence of amino acid bradytrophies. The resolution of transcriptional pauses in EMP glycolysis and aerobic respiration genes by Gre factors safeguards Salmonella from the cytotoxicity of phagocyte NADPH oxidase in the innate host response. In particular, the activation of cytochrome bd protects Salmonella from phagocyte NADPH oxidase-dependent killing by promoting glucose utilization, redox balancing, and energy production. Control of transcription fidelity and elongation by Gre factors represent important points in the regulation of metabolic programs supporting bacterial pathogenesis.


Assuntos
Estresse Oxidativo , Salmonella , Salmonella/genética , Estresse Oxidativo/genética , Oxirredução , NADPH Oxidases/metabolismo , Glucose/metabolismo
4.
Nat Commun ; 13(1): 6210, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266276

RESUMO

The exquisite specificity between a sensor kinase and its cognate response regulator ensures faithful partner selectivity within two-component pairs concurrently firing in a single bacterium, minimizing crosstalk with other members of this conserved family of paralogous proteins. We show that conserved hydrophobic and charged residues on the surface of thioredoxin serve as a docking station for structurally diverse response regulators. Using the OmpR protein, we identify residues in the flexible linker and the C-terminal ß-hairpin that enable associations of this archetypical response regulator with thioredoxin, but are dispensable for interactions of this transcription factor to its cognate sensor kinase EnvZ, DNA or RNA polymerase. Here we show that the promiscuous interactions of response regulators with thioredoxin foster the flow of information through otherwise highly dedicated two-component signaling systems, thereby enabling both the transcription of Salmonella pathogenicity island-2 genes as well as growth of this intracellular bacterium in macrophages and mice.


Assuntos
Proteínas de Bactérias , Proteínas de Escherichia coli , Animais , Camundongos , Proteínas de Bactérias/metabolismo , Virulência , Fatores de Transcrição/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , DNA , Regulação Bacteriana da Expressão Gênica , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo
5.
J Biol Chem ; 298(7): 102130, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35714768

RESUMO

The type III secretion system encoded in the Salmonella pathogenicity island-2 (SPI-2) gene cluster facilitates intracellular growth of nontyphoidal Salmonella by interfering with the maturation of Salmonella-containing vacuoles along the degradative pathway. SPI-2 gene products also protect Salmonella against the antimicrobial activity of reactive oxygen species (ROS) synthesized by the phagocyte NADPH oxidase 2 (NOX2). However, a potential relationship between inflammatory ROS and the activation of transcription of SPI-2 genes by intracellular Salmonella is unclear. Here, we show that ROS engendered in the innate host response stimulate SPI-2 gene transcription. We found that the expression of SPI-2 genes in Salmonella-sustaining oxidative stress conditions involves DksA, a protein otherwise known to regulate the stringent response of bacteria to nutritional stress. We also demonstrate that the J and zinc-2-oxidoreductase domains of DnaJ as well as the ATPase activity of the DnaK chaperone facilitate loading of DksA onto RNA polymerase complexed with SPI-2 promoters. Furthermore, the DksA-driven transcription of SPI-2 genes in Salmonella experiencing oxidative stress is contingent on upstream OmpR, PhoP, and SsrB signaling events that participate in the removal of nucleoid proteins while simultaneously recruiting RNA polymerase to SPI-2 promoter regions. Taken together, our results suggest the activation of SPI-2 gene transcription in Salmonella subjected to ROS produced by the respiratory burst of macrophages protects this intracellular pathogen against NOX2-mediated killing. We propose that Salmonella have co-opted inflammatory ROS to induce SPI-2-mediated protective responses against NOX2 host defenses.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana , Estresse Oxidativo , Salmonella , Ativação Transcricional , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/genética , Espécies Reativas de Oxigênio/metabolismo , Salmonella/genética , Salmonella/metabolismo , Ativação Transcricional/fisiologia
6.
mBio ; 13(3): e0048022, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35575513

RESUMO

Metabolic and growth arrest are primary drivers of antibiotic tolerance and persistence in clinically diverse bacterial pathogens. We recently showed that adenosine (ADO) suppresses bacterial growth under nutrient-limiting conditions. In the current study, we show that despite the growth-suppressive effect of ADO, extracellular ADO enhances antibiotic killing in both Gram-negative and Gram-positive bacteria by up to 5 orders of magnitude. The ADO-potentiated antibiotic activity is dependent on purine salvage and is paralleled with a suppression of guanosine tetraphosphate synthesis and the massive accumulation of ATP and GTP. These changes in nucleoside phosphates coincide with transient increases in rRNA transcription and proton motive force. The potentiation of antibiotic killing by ADO is manifested against bacteria grown under both aerobic and anaerobic conditions, and it is exhibited even in the absence of alternative electron acceptors such as nitrate. ADO potentiates antibiotic killing by generating proton motive force and can occur independently of an ATP synthase. Bacteria treated with an uncoupler of oxidative phosphorylation and NADH dehydrogenase-deficient bacteria are refractory to the ADO-potentiated killing, suggesting that the metabolic awakening induced by this nucleoside is intrinsically dependent on an energized membrane. In conclusion, ADO represents a novel example of metabolite-driven but growth-independent means to reverse antibiotic tolerance. Our investigations identify the purine salvage pathway as a potential target for the development of therapeutics that may improve infection clearance while reducing the emergence of antibiotic resistance. IMPORTANCE Antibiotic tolerance, which is a hallmark of persister bacteria, contributes to treatment-refractory infections and the emergence of heritable antimicrobial resistance. Drugs that reverse tolerance and persistence may become part of the arsenal to combat antimicrobial resistance. Here, we demonstrate that salvage of extracellular ADO reduces antibiotic tolerance in nutritionally stressed Escherichia coli, Salmonella enterica, and Staphylococcus aureus. ADO potentiates bacterial killing under aerobic and anaerobic conditions and takes place in bacteria lacking the ATP synthase. However, the sensitization to antibiotic killing elicited by ADO requires an intact NADH dehydrogenase, suggesting a requirement for an energized electron transport chain. ADO antagonizes antibiotic tolerance by activating ATP and GTP synthesis, promoting proton motive force and cellular respiration while simultaneously suppressing the stringent response. These investigations reveal an unprecedented role for purine salvage stimulation as a countermeasure of antibiotic tolerance and the emergence of antimicrobial resistance.


Assuntos
Antibacterianos , Salmonella enterica , Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Antibacterianos/farmacologia , Escherichia coli/genética , Guanosina Trifosfato , Testes de Sensibilidade Microbiana , NADH Desidrogenase/metabolismo , Nucleosídeos/farmacologia , Salmonella enterica/metabolismo
7.
mBio ; 12(3)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33975942

RESUMO

Our previous biochemical approaches showed that the oxidoreductase activity of the DnaJ protein facilitates the interaction of oxidized DksA with RNA polymerase. Investigations herein demonstrate that under biologically relevant conditions the DnaJ- and DksA-codependent activation of the stringent response in Salmonella undergoing oxidative stress involves the DnaK chaperone. Oxidation of DksA cysteine residues stimulates redox-based and holdase interactions with zinc-binding and C-terminal domains of DnaJ. Genetic and biochemical evidence indicates that His33 in the HPD motif in the J domain of DnaJ facilitates interactions of unfolded DksA with DnaK. A mutation in His33 in the J domain prevents the presentation of unfolded DksA to DnaK without limiting the oxidoreductase activity mapped to DnaJ's zinc-2 site. Thr199 in the ATPase catalytic site of DnaK is required for the formation of the DksA/RNA polymerase complex. The DnaK/DnaJ/DksA complex enables the formation of an enzymatically active RNA polymerase holoenzyme that stimulates transcription of branched-chain amino acid and histidine metabolic genes in Salmonella exposed to reactive oxygen species. The DnaK/DnaJ chaperone protects Salmonella against the cytotoxicity associated with reactive oxygen species generated by the phagocyte NADPH oxidase in the innate host response. The antioxidant defenses associated with DnaK/DnaJ can in part be ascribed to the elicitation of the DksA-dependent stringent response and the protection this chaperone system provides against protein carbonylation in Salmonella undergoing oxidative stress.IMPORTANCE DksA was discovered 30 years ago in a screen for suppressors that reversed the thermosensitivity of Escherichia coli mutant strains deficient in DnaK/DnaJ, raising the possibility that this chaperone system may control DksA function. Since its serendipitous discovery, DksA has emerged as a key activator of the transcriptional program called the stringent response in Gram-negative bacteria experiencing diverse adverse conditions, including nutritional starvation or oxidative stress. DksA activates the stringent response through the allosteric control this regulatory protein exerts on the kinetics of RNA polymerase promoter open complexes. Recent investigations have shown that DksA overexpression protects dnaKJ mutant bacteria against heat shock indirectly via the ancestral chaperone polyphosphate, casting doubt on a possible complexation of DnaK, DnaJ, and DksA. Nonetheless, research presented herein demonstrates that the cochaperones DnaK and DnaJ enable DksA/RNA polymerase complex formation in response to oxidative stress.


Assuntos
Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP70/genética , Estresse Oxidativo , Salmonella typhimurium/genética , Animais , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Salmonella typhimurium/metabolismo
8.
Nat Commun ; 11(1): 1783, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286292

RESUMO

The microbial adaptations to the respiratory burst remain poorly understood, and establishing how the NADPH oxidase (NOX2) kills microbes has proven elusive. Here we demonstrate that NOX2 collapses the ΔpH of intracellular Salmonella Typhimurium. The depolarization experienced by Salmonella undergoing oxidative stress impairs folding of periplasmic proteins. Depolarization in respiring Salmonella mediates intense bactericidal activity of reactive oxygen species (ROS). Salmonella adapts to the challenges oxidative stress imposes on membrane bioenergetics by shifting redox balance to glycolysis and fermentation, thereby diminishing electron flow through the membrane, meeting energetic requirements and anaplerotically generating tricarboxylic acid intermediates. By diverting electrons away from the respiratory chain, glycolysis also enables thiol/disulfide exchange-mediated folding of bacterial cell envelope proteins during periods of oxidative stress. Thus, primordial metabolic pathways, already present in bacteria before aerobic respiration evolved, offer a solution to the stress ROS exert on molecular targets at the bacterial cell envelope.


Assuntos
Glicólise/fisiologia , NADPH Oxidases/metabolismo , Estresse Oxidativo/fisiologia , Salmonella typhimurium/enzimologia , Salmonella typhimurium/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fermentação/genética , Fermentação/fisiologia , Glicólise/genética , NADPH Oxidases/genética , Oxirredução , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Salmonella typhimurium/genética
9.
J Bacteriol ; 202(12)2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32229531

RESUMO

In response to nutrient depletion, the RelA and SpoT proteins generate the signaling molecule (p)ppGpp, which then controls a number of downstream effectors to modulate cell physiology. In Acinetobacter baumannii strain AB5075, a relA ortholog (ABUW_3302) was identified by a transposon insertion that conferred an unusual colony phenotype. An in-frame deletion in relA (ΔrelA) failed to produce detectable levels of ppGpp when amino acid starvation was induced with serine hydroxamate. The ΔrelA mutant was blocked from switching from the virulent opaque colony variant (VIR-O) to the avirulent translucent colony variant (AV-T), but the rate of AV-T to VIR-O switching was unchanged. In addition, the ΔrelA mutation resulted in a pronounced hypermotile phenotype on 0.35% agar plates. This hypermotility was dependent on the activation of a LysR regulator ABUW_1132, which was required for expression of AbaR, a LuxR family quorum-sensing regulator. In the ΔrelA mutant, ABUW_1132 was also required for the increased expression of an operon composed of the ABUW_3766-ABUW_3773 genes required for production of the surfactant-like lipopeptide acinetin 505. Additional phenotypes identified in the ΔrelA mutant included (i) cell elongation at high density, (ii) reduced formation of persister cells tolerant to colistin and rifampin, and (iii) decreased virulence in a Galleria mellonella model.IMPORTANCEAcinetobacter baumannii is a pathogen of worldwide importance. Due to the increasing prevalence of antibiotic resistance, these infections are becoming increasingly difficult to treat. New therapies are required to combat multidrug-resistant isolates. The role of RelA in A. baumannii is largely unknown. This study demonstrates that like in other bacteria, RelA controls a variety of functions, including virulence. Strategies to inhibit the activity of RelA and the resulting production of ppGpp could inhibit virulence and may represent a new therapeutic approach.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/metabolismo , Proteínas de Bactérias/metabolismo , Acinetobacter baumannii/genética , Animais , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Guanosina Tetrafosfato/metabolismo , Humanos , Mariposas/microbiologia , Óperon , Fenótipo , Virulência
10.
Sci Adv ; 6(9): eaaz0260, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32133408

RESUMO

Cytostasis is the most salient manifestation of the potent antimicrobial activity of nitric oxide (NO), yet the mechanism by which NO disrupts bacterial cell division is unknown. Here, we show that in respiring Escherichia coli, Salmonella, and Bacillus subtilis, NO arrests the first step in division, namely, the GTP-dependent assembly of the bacterial tubulin homolog FtsZ into a cytokinetic ring. FtsZ assembly fails in respiring cells because NO inactivates inosine 5'-monophosphate dehydrogenase in de novo purine nucleotide biosynthesis and quinol oxidases in the electron transport chain, leading to drastic depletion of nucleoside triphosphates, including the GTP needed for the polymerization of FtsZ. Despite inhibiting respiration and dissipating proton motive force, NO does not destroy Z ring formation and only modestly decreases nucleoside triphosphates in glycolytic cells, which obtain much of their ATP by substrate-level phosphorylation and overexpress inosine 5'-monophosphate dehydrogenase. Purine metabolism dictates the susceptibility of early morphogenic steps in cytokinesis to NO toxicity.


Assuntos
Bacillus subtilis/metabolismo , Citocinese/efeitos dos fármacos , Escherichia coli/metabolismo , Óxido Nítrico/farmacologia , Salmonella/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citocinese/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/genética , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/genética , Força Próton-Motriz/efeitos dos fármacos , Força Próton-Motriz/genética , Salmonella/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA