Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 9(32): e2203767, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36116125

RESUMO

Predicting and preventing disasters in difficult-to-access environments, such as oceans, requires self-powered monitoring devices. Since the need to periodically charge and replace batteries is an economic and environmental concern, energy harvesting from external stimuli to supply electricity to batteries is increasingly being considered. Especially, in aqueous environments including electrolytes, coiled carbon nanotube (CNT) yarn harvesters have been reported as an emerging approach for converting mechanical energy into electrical energy driven by large and reversible capacitance changes under stretching and releasing. To realize enhanced harvesting performance, experimental and computational approaches to optimize structural homogeneity and electrochemical accessible area in CNT yarns to maximize intrinsic electrochemical capacitance (IEC) and stretch-induced changes are presented here. Enhanced IEC further enables to decrease matching impedance for more energy efficient circuits with harvesters. In an ocean-like environment with a frequency from 0.1 to 1 Hz, the proposed harvester demonstrates the highest volumetric power (1.6-10.45 mW cm-3 ) of all mechanical harvesters reported in the literature to the knowledge of the authors. Additionally, a high electrical peak power of 540 W kg-1 and energy conversion efficiency of 2.15% are obtained from torsional and tensile mechanical energy.

2.
ACS Sens ; 4(11): 2893-2899, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31525897

RESUMO

The strong peristaltic contraction of the stomach facilitates mixing and emptying of ingested food, which occurs rhythmically at approximately 3 cycles/min (cpm) in humans. Generally, most patients with gastroparesis show gastric electrical dysrhythmia that is disrupted electrical signals controlling gastric contractions. For treatment of gastric electrical dysrhythmia, in vivo electrical impulses to the stomach via an implanted gastric stimulator have been known to restore these gastric deformations. Nevertheless, improved sensors to monitor gastric contractions are still needed in current gastric stimulators. Recently, we have developed a new technology converting mechanical motion to electrical energy by using stretch-induced capacitance changes of a coiled carbon-nanotube (CNT) yarn. For its potential use as a gastric deformation sensor, the performance of a coiled CNT yarn was evaluated in several biological fluids. For a sinusoidal stretch to 30%, the peak-to-peak open-circuit voltage (OCV) was consistently generated at frequencies below 0.1 Hz. This sinusoidal variation in OCV augmented as the strain increased from 10 to 30%. In an in vitro artificial gastric system, the OCV was approximately linearly proportional to the balloon volume, which can monitor periodic deformations of the balloon at 2, 3, and 4 cpm as shown for human gastric deformations. Moreover, stretchy coiled yarns generate the peak electrical voltage and power when deformed. The present study shows that a self-powered CNT yarn sensor can not only monitor the changes in frequency and amplitude of volumetric change but also generate electrical power by periodic deformations of the balloon. Therefore, it seems possible to automatically deliver accurate electrical impulses according to real-time evaluation of a patient's gastric deformation based on information on the frequency, amplitude, and rate of the OCV from CNT yarn.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Nanotubos de Carbono/química , Gastropatias/diagnóstico por imagem , Terapia por Estimulação Elétrica , Eletrônica , Humanos , Gastropatias/terapia
3.
ACS Appl Mater Interfaces ; 11(14): 13533-13537, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30924629

RESUMO

Twisted-yarn-based artificial muscles can potentially be used in diverse applications, such as valves in microfluidic devices, smart textiles, air vehicles, and exoskeletons, because of their high torsional and tensile strokes, high work capacities, and long cycle life. Here, we demonstrate electrochemically powered, hierarchically twisted carbon nanotube yarn artificial muscles that have a contractile work capacity of 3.78 kJ/kg, which is 95 times the work capacity of mammalian skeletal muscles. This record work capacity and a tensile stroke of 15.1% were obtained by maximizing yarn capacitance by optimizing the degree of inserted twist in component yarns that are plied until fully coiled. These electrochemically driven artificial muscles can be operated in reverse as mechanical energy harvesters that need no externally applied bias. In aqueous sodium chloride electrolyte, a peak electrical output power of 0.65 W/kg of energy harvester was generated by 1 Hz sinusoidal elongation.

4.
RSC Adv ; 8(24): 13112-13120, 2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35542516

RESUMO

Asymmetric supercapacitors are receiving much research interests due to their wide operating potential window and high energy density. In this study, we report the fabrication of asymmetrically configured yarn based supercapacitor by using liquid-state biscrolling technology. High loading amounts of reduced graphene oxide anode guest (90.1 wt%) and MnO2 cathode guest (70 wt%) materials were successfully embedded into carbon nanotube yarn host electrodes. The resulting asymmetric yarn supercapacitor coated by gel based organic electrolyte (PVDF-HFP-TEA·BF4) exhibited wider potential window (up to 3.5 V) and resulting high energy density (43 µW h cm-2). Moreover, the yarn electrodes were mechanically strong enough to be woven into commercial textiles. The textile supercapacitor exhibited stable electrochemical energy storage performances during dynamically applied deformations.

5.
Science ; 357(6353): 773-778, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28839068

RESUMO

Mechanical energy harvesters are needed for diverse applications, including self-powered wireless sensors, structural and human health monitoring systems, and the extraction of energy from ocean waves. We report carbon nanotube yarn harvesters that electrochemically convert tensile or torsional mechanical energy into electrical energy without requiring an external bias voltage. Stretching coiled yarns generated 250 watts per kilogram of peak electrical power when cycled up to 30 hertz, as well as up to 41.2 joules per kilogram of electrical energy per mechanical cycle, when normalized to harvester yarn weight. These energy harvesters were used in the ocean to harvest wave energy, combined with thermally driven artificial muscles to convert temperature fluctuations to electrical energy, sewn into textiles for use as self-powered respiration sensors, and used to power a light-emitting diode and to charge a storage capacitor.

6.
Adv Mater ; 29(31)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28627770

RESUMO

While artificial muscle yarns and fibers are potentially important for many applications, the combination of large strokes, high gravimetric work capacities, short cycle times, and high efficiencies are not realized for these fibers. This paper demonstrates here electrochemically powered carbon nanotube yarn muscles that provide tensile contraction as high as 16.5%, which is 12.7 times higher than previously obtained. These electrochemical muscles can deliver a contractile energy conversion efficiency of 5.4%, which is 4.1 times higher than reported for any organic-material-based artificial muscle. All-solid-state parallel muscles and braided muscles, which do not require a liquid electrolyte, provide tensile contractions of 11.6% and 5%, respectively. These artificial muscles might eventually be deployed for a host of applications, from robotics to perhaps even implantable medical devices.


Assuntos
Nanotubos de Carbono , Técnicas Eletroquímicas , Contração Muscular , Músculos , Robótica , Resistência à Tração
7.
Nat Commun ; 7: 13811, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27976668

RESUMO

Yarn-based supercapacitors having improved performance are needed for existing and emerging wearable applications. Here, we report weavable carbon nanotube yarn supercapacitors having high performance because of high loadings of rapidly accessible charge storage particles (above 90 wt% MnO2). The yarn electrodes are made by a biscrolling process that traps host MnO2 nanoparticles within the galleries of helically scrolled carbon nanotube sheets, which provide strength and electrical conductivity. Despite the high loading of brittle metal oxide particles, the biscrolled solid-state yarn supercapacitors are flexible and can be made elastically stretchable (up to 30% strain) by over-twisting to produce yarn coiling. The maximum areal capacitance of the yarn electrodes were up to 100 times higher than for previously reported fibres or yarn supercapacitors. Similarly, the energy density of complete, solid-state supercapacitors made from biscrolled yarn electrodes with gel electrolyte coating were significantly higher than for previously reported fibre or yarn supercapacitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...