Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38610266

RESUMO

This study enhances infrared communication security in nuclear power plants' secondary systems, addressing the risk of mechanical and cyber failures. A novel random address generator, employing an innovative S-box, was developed to secure IoT sensor data transmissions to gateway nodes, mitigating eavesdropping, interference, and replay attacks. We introduced a structured IR communication protocol, generating unique, encrypted addresses to prevent unauthorized access. Key-dependent S-boxes, based on a compound chaotic map system, significantly improved encryption, increasing data transmission randomness and uniqueness. Entropy analysis and reduced duplicated addresses confirmed the effectiveness of our method, with the Hash-CCM algorithm showing the highest entropy and fewest duplicates. Integrating advanced cryptographic techniques into IR systems significantly enhances nuclear power plants' security, contributing to the protection of critical infrastructure from cyber threats and ensuring operational integrity.

2.
Sci Rep ; 14(1): 3428, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341499

RESUMO

The wormhole attack is one of the most treacherous attacks projected at the routing layer that can bypass cryptographic measures and derail the entire communication network. It is too difficult to prevent a priori; all the possible countermeasures are either too expensive or ineffective. Indeed, literature solutions either require expensive hardware (typically UWB or secure GPS transceivers) or pose specific constraints to the adversarial behavior (doing or not doing a suspicious action). The proposed solution belongs to the second category because the adversary is assumed to have done one or more known suspicious actions. In this solution, we adopt a heuristic approach to detect wormholes in ad hoc networks based on the detection of their illicit behaviors. Wormhole and post wormhole attacks are often confused in literature; that's why we clearly state that our methodology does not provide a defence against wormholes, but rather against the actions that an adversary does after the wormhole, such as packet dropping, tampering with TTL, replaying and looping, etc. In terms of contributions, the proposed solution addresses the knock-out capability of attackers that is less targeted by the researcher's community. In addition, it neither requires any additional hardware nor a change in it; instead, it is compatible with the existing network stack. The idea is simulated in ns2.30, and the average detection rate of the proposed solution is found to be 98-99%. The theoretical time to detect a wormhole node lies between 0.07-0.71 seconds. But, from the simulation, the average detection and isolation time is 0.67 seconds. In term of packet loss, the proposed solution has a relatively overhead of [Formula: see text] 22%. It works well in static and mobile scenarios, but the frame losses are higher in mobile scenarios as compared to static ones. The computational complexity of the solution is O(n). Simulation results advocate that the solution is effective in terms of memory, processing, bandwidth, and energy cost. The solution is validated using statistical parameters such as Accuracy, Precision, F1-Score and Matthews correlation coefficient ([Formula: see text]).

3.
Sensors (Basel) ; 24(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257526

RESUMO

Cloud computing technology is rapidly becoming ubiquitous and indispensable. However, its widespread adoption also exposes organizations and individuals to a broad spectrum of potential threats. Despite the multiple advantages the cloud offers, organizations remain cautious about migrating their data and applications to the cloud due to fears of data breaches and security compromises. In light of these concerns, this study has conducted an in-depth examination of a variety of articles to enhance the comprehension of the challenges related to safeguarding and fortifying data within the cloud environment. Furthermore, the research has scrutinized several well-documented data breaches, analyzing the financial consequences they inflicted. Additionally, it scrutinizes the distinctions between conventional digital forensics and the forensic procedures specific to cloud computing. As a result of this investigation, the study has concluded by proposing potential opportunities for further research in this critical domain. By doing so, it contributes to our collective understanding of the complex panorama of cloud data protection and security, while acknowledging the evolving nature of technology and the need for ongoing exploration and innovation in this field. This study also helps in understanding the compound annual growth rate (CAGR) of cloud digital forensics, which is found to be quite high at ≈16.53% from 2023 to 2031. Moreover, its market is expected to reach ≈USD 36.9 billion by the year 2031; presently, it is ≈USD 11.21 billion, which shows that there are great opportunities for investment in this area. This study also strategically addresses emerging challenges in cloud digital forensics, providing a comprehensive approach to navigating and overcoming the complexities associated with the evolving landscape of cloud computing.

4.
PLoS One ; 19(1): e0293626, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38271324

RESUMO

The rapid replacement of PSTN with VOIP networks indicates the definitive phase-out of the PBX/PABX with smartphone-based VOIP technology that uses WLAN connectivity for local communication; however, security remains a key issue, regardless of the communication coverage area. Session initiation protocol (SIP) is one of the most widely adopted VOIP connection establishment protocols but requires added security. On the Internet, different security protocols, such as HTTPS (SSL/TLS), IPSec, and S/MIME, are used to protect SIP communication. These protocols require sophisticated infrastructure and some pose a significant overhead that may deteriorate SIP performance. In this article, we propose the following: i) avoid using Internet bandwidth and complex Internet protocols for local communication within an organization, but harness WLAN connectivity, ii) use multi-threaded or multicore computer systems to handle concurrent calls instead of installing hardware-based SIP servers, and iii) run each thread in a separate core. Cryptography is a key tool for securely transmitting confidential data for long- and short-range communication, and the Diffie-Hellman (DH) protocol has consistently been a popular choice for secret key exchanges. Primarily, used for symmetric key sharing, it has been proven effective in generating public/private key pairs, sharing public keys securely over public channels, and subsequently deriving shared secret keys from private/public keys. This key exchange scheme was proposed to safeguard VOIP communication within WLANs, which rely on the SIP for messaging and multimedia communication. For ensuring an efficient implementation of SIP, the system was rigorously analyzed using the M/M/1 and M/M/c queuing models. We analyze the behavior of SIP servers with queuing models with and without end-to-end security and increase users' trust in SIP security by providing a transparent sense of end-to-end security as they create and manage their private and public keys instead of relying on the underlying SIP technology. This research implements instant messaging, voice conversation, and secret key generation over DH while implementing and observing the role of multi-threading in multiqueue systems that serve incoming calls. By increasing the number of threads from one to two, the SIP response time improved from 20.23809 to 0.08070 min at an arrival rate of 4250 calls/day and a service rate of three calls/min. Similarly, by adding one to seven threads, the queue length was reduced by four calls/min. Implementing secure media streaming and reliable AES-based signaling for session confidentiality and integrity introduces a minor 8-ms tradeoff in SIP service performance. However, the advantages of implementing added security outweigh this limitation.


Assuntos
Segurança Computacional , Software , Computadores , Comunicação , Internet , Confidencialidade
5.
Sensors (Basel) ; 23(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37896528

RESUMO

The enormous increase in heterogeneous wireless devices operating in real-time applications for Internet of Things (IoT) applications presents new challenges, including heterogeneity, reliability, and scalability. To address these issues effectively, a novel architecture has been introduced, combining Software-Defined Wireless Sensor Networks (SDWSN) with the IoT, known as the SDWSN-IoT. However, wireless IoT devices deployed in such systems face limitations in the energy supply, unpredicted network changes, and the quality of service requirements. Such challenges necessitate the careful design of the underlying routing protocol, as failure to address them often results in constantly disconnected networks with poor network performance. In this paper, we present an intelligent, energy-efficient multi-objective routing protocol based on the Reinforcement Learning (RL) algorithm with Dynamic Objective Selection (DOS-RL). The primary goal of applying the proposed DOS-RL routing scheme is to optimize energy consumption in IoT networks, a paramount concern given the limited energy reserves of wireless IoT devices and the adaptability to network changes to facilitate a seamless adaption to sudden network changes, mitigating disruptions and optimizing the overall network performance. The algorithm considers correlated objectives with informative-shaped rewards to accelerate the learning process. Through the diverse simulations, we demonstrated improved energy efficiency and fast adaptation to unexpected network changes by enhancing the packet delivery ratio and reducing data delivery latency when compared to traditional routing protocols such as the Open Shortest Path First (OSPF) and the multi-objective Q-routing for Software-Defined Networks (SDN-Q).

6.
Heliyon ; 9(6): e17580, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37416690

RESUMO

Fifth generation (5G) wireless networks are based on the use of spectrum blocks above 6 GHz in the millimeter wave (mmWave) range to increase throughput and reduce the overall level of interference in very busy frequency bands below 6 GHz. With the global deployment of the first commercial installations of 5G, the availability of multi-Gbps wireless connections in the mmWave frequency band becomes closer to reality and opens up some unique uses for 5G. Although, mmWave communication is expected to enable high-power radio links and broadband wireless intranet, its main challenges are inherent poor propagation conditions and high transmitter-receiver coordination requirement, which prevent it from realizing its full potential. When smart reflective surfaces are used in mmWave communication, channel state information becomes complex and imprecise. In this study, a hybrid intelligent reflecting surface consisting of a large number of passive components and a small number of RF circuits is proposed as a solution. Then, an improved deep neural network (DNN)-based technique is proposed to estimate the effective channel. The proposed technique provides better channel estimation performance according to the simulation results and improves the quality of service.

7.
Sensors (Basel) ; 22(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36560144

RESUMO

In today's world, mental health diseases have become highly prevalent, and depression is one of the mental health problems that has become widespread. According to WHO reports, depression is the second-leading cause of the global burden of diseases. In the proliferation of such issues, social media has proven to be a great platform for people to express themselves. Thus, a user's social media can speak a great deal about his/her emotional state and mental health. Considering the high pervasiveness of the disease, this paper presents a novel framework for depression detection from textual data, employing Natural Language Processing and deep learning techniques. For this purpose, a dataset consisting of tweets was created, which were then manually annotated by the domain experts to capture the implicit and explicit depression context. Two variations of the dataset were created, on having binary and one ternary labels, respectively. Ultimately, a deep-learning-based hybrid Sequence, Semantic, Context Learning (SSCL) classification framework with a self-attention mechanism is proposed that utilizes GloVe (pre-trained word embeddings) for feature extraction; LSTM and CNN were used to capture the sequence and semantics of tweets; finally, the GRUs and self-attention mechanism were used, which focus on contextual and implicit information in the tweets. The framework outperformed the existing techniques in detecting the explicit and implicit context, with an accuracy of 97.4 for binary labeled data and 82.9 for ternary labeled data. We further tested our proposed SSCL framework on unseen data (random tweets), for which an F1-score of 94.4 was achieved. Furthermore, in order to showcase the strengths of the proposed framework, we validated it on the "News Headline Data set" for sarcasm detection, considering a dataset from a different domain. It also outmatched the performance of existing techniques in cross-domain validation.


Assuntos
Aprendizado Profundo , Transtornos Mentais , Mídias Sociais , Humanos , Masculino , Feminino , Semântica , Depressão/diagnóstico , Saúde Mental
8.
Sensors (Basel) ; 22(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36298073

RESUMO

The deployment of wearable or body-worn devices is increasing rapidly, and thus researchers' interests mainly include technical and economical issues, such as networking, interoperability, security, power optimization, business growth and regulation. To address these issues properly, previous survey papers usually focused on describing the wireless body area network architecture and network protocols. This implies that deployment issues and awareness issues of wearable and BAN devices are not emphasized in previous work. To defeat this problem, in this study, we have focused on feasibility, limitations, and security concerns in wireless body area networks. In the aspect of the economy, we have focused on the compound annual growth rate of these devices in the global market, different regulations of wearable/wireless body area network devices in different regions and countries of the world and feasible research projects for wireless body area networks. In addition, this study focuses on the domain of devices that are equally important to physicians, sportsmen, trainers and coaches, computer scientists, engineers, and investors. The outcomes of this study relating to physicians, fitness trainers and coaches indicate that the use of these devices means they would be able to treat their clients in a more effective way. The study also converges the focus of businessmen on the Annual Growth Rate (CAGR) and provides manufacturers and vendors with information about different regulatory bodies that are monitoring and regulating WBAN devices. Therefore, by providing deployment issues in the aspects of technology and economy at the same time, we believe that this survey can serve as a preliminary material that will lead to more advancements and improvements in deployment in the area of wearable wireless body area networks. Finally, we present open issues and further research direction in the area of wireless body area networks.


Assuntos
Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Humanos , Tecnologia , Redes de Comunicação de Computadores
9.
Sensors (Basel) ; 22(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35161740

RESUMO

The Internet of Things (IoT) is an extensive network of heterogeneous devices that provides an array of innovative applications and services. IoT networks enable the integration of data and services to seamlessly interconnect the cyber and physical systems. However, the heterogeneity of devices, underlying technologies and lack of standardization pose critical challenges in this domain. On account of these challenges, this research article aims to provide a comprehensive overview of the enabling technologies and standards that build up the IoT technology stack. First, a layered architecture approach is presented where the state-of-the-art research and open challenges are discussed at every layer. Next, this research article focuses on the role of middleware platforms in IoT application development and integration. Furthermore, this article addresses the open challenges and provides comprehensive steps towards IoT stack optimization. Finally, the interfacing of Fog/Edge Networks to IoT technology stack is thoroughly investigated by discussing the current research and open challenges in this domain. The main scope of this study is to provide a comprehensive review into IoT technology (the horizontal fabric), the associated middleware and networks required to build future proof applications (the vertical markets).

10.
Sensors (Basel) ; 23(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36616821

RESUMO

In wireless sensor networks, tree-based routing can achieve a low control overhead and high responsiveness by eliminating the path search and avoiding the use of extensive broadcast messages. However, existing approaches face difficulty in finding an optimal parent node, owing to conflicting performance metrics such as reliability, latency, and energy efficiency. To strike a balance between these multiple objectives, in this paper, we revisit a classic problem of finding an optimal parent node in a tree topology. Our key idea is to find the best parent node by utilizing empirical data about the network obtained through Q-learning. Specifically, we define a state space, action set, and reward function using multiple cognitive metrics, and then find the best parent node through trial and error. Simulation results demonstrate that the proposed solution can achieve better performance regarding end-to-end delay, packet delivery ratio, and energy consumption compared with existing approaches.


Assuntos
Algoritmos , Tecnologia sem Fio , Reprodutibilidade dos Testes , Simulação por Computador
11.
Sensors (Basel) ; 20(19)2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33028013

RESUMO

Although various unmanned aerial vehicle (UAV)-assisted routing protocols have been proposed for vehicular ad hoc networks, few studies have investigated load balancing algorithms to accommodate future traffic growth and deal with complex dynamic network environments simultaneously. In particular, owing to the extended coverage and clear line-of-sight relay link on a UAV relay node (URN), the possibility of a bottleneck link is high. To prevent problems caused by traffic congestion, we propose Q-learning based load balancing routing (Q-LBR) through a combination of three key techniques, namely, a low-overhead technique for estimating the network load through the queue status obtained from each ground vehicular node by the URN, a load balancing scheme based on Q-learning and a reward control function for rapid convergence of Q-learning. Through diverse simulations, we demonstrate that Q-LBR improves the packet delivery ratio, network utilization and latency by more than 8, 28 and 30%, respectively, compared to the existing protocol.

12.
Artigo em Inglês | MEDLINE | ID: mdl-32512935

RESUMO

Various simulation studies for wireless body area networks (WBANs) based on the IEEE 802.15.6 standard have recently been carried out. However, most of these studies have applied a simplified model without using any major components specific to IEEE 802.15.6, such as connection-oriented link allocations, inter-WBAN interference mitigation, or a two-hop star topology extension. Thus, such deficiencies can lead to an inaccurate performance analysis. To solve these problems, in this study, we conducted a comprehensive review of the major components of the IEEE 802.15.6 standard and herein present modeling strategies for implementing IEEE 802.15.6 MAC on an NS-3 simulator. In addition, we configured realistic network scenarios for a performance evaluation in terms of throughput, average delay, and power consumption. The simulation results prove that our simulation system provides acceptable levels of performance for various types of medical applications, and can support the latest research topics regarding the dynamic resource allocation, inter-WBAN interference mitigation, and intra-WBAN routing.


Assuntos
Redes de Comunicação de Computadores , Tecnologia sem Fio , Alocação de Recursos
13.
Sensors (Basel) ; 20(6)2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32183403

RESUMO

Many applications are able to obtain enriched information by employing a wireless multimedia sensor network (WMSN) in industrial environments, which consists of nodes that are capable of processing multimedia data. However, as many aspects of WMSNs still need to be refined, this remains a potential research area. An efficient application needs the ability to capture and store the latest information about an object or event, which requires real-time multimedia data to be delivered to the sink timely. Motivated to achieve this goal, we developed a new adaptive QoS routing protocol based on the (m,k)-firm model. The proposed model processes captured information by employing a multimedia stream in the (m,k)-firm format. In addition, the model includes a new adaptive real-time protocol and traffic handling scheme to transmit event information by selecting the next hop according to the flow status as well as the requirement of the (m,k)-firm model. Different from the previous approach, two level adjustment in routing protocol and traffic management are able to increase the number of successful packets within the deadline as well as path setup schemes along the previous route is able to reduce the packet loss until a new path is established. Our simulation results demonstrate that the proposed schemes are able to improve the stream dynamic success ratio and network lifetime compared to previous work by meeting the requirement of the (m,k)-firm model regardless of the amount of traffic.

14.
Sensors (Basel) ; 19(19)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547159

RESUMO

To improve the packet delivery ratio in wireless sensor networks, many approaches such as multipath, opportunistic, and learning-based routing protocols have been proposed. However, the performance of the existing protocols are degraded under long-hop wireless sensor networks because the additional overhead is proportional to the number of hops. To deal with the overhead, we propose an opportunistic multipath routing that forecasts the required number of paths, as well as bifurcation based on opportunistic routing according to the reliability requirement. In the proposed scheme, an intermediate node is able to select a different node for each transmission and to handle path failure adaptively. Through a performance evaluation, we demonstrate that the proposed scheme achieves a higher packet delivery ratio and reduces the energy consumption by at least approximately 33% and up to approximately 65% compared with existing routing protocols, under the condition of an 80% link success ratio in the long-hop sensor network.

15.
Sensors (Basel) ; 19(7)2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939722

RESUMO

Before discovering meaningful knowledge from big data systems, it is first necessary to build a data-gathering infrastructure. Among many feasible data sources, wireless sensor networks (WSNs) are rich big data sources: a large amount of data is generated by various sensor nodes in large-scale networks. However, unlike typical wireless networks, WSNs have serious deficiencies in terms of data reliability and communication owing to the limited capabilities of the nodes. Moreover, a considerable amount of sensed data are of no interest, meaningless, and redundant when a large number of sensor nodes is densely deployed. Many studies address the existing problems and propose methods to overcome the limitations when constructing big data systems with WSN. However, a published paper that provides deep insight into this research area remains lacking. To address this gap in the literature, we present a comprehensive survey that investigates state-of-the-art research work on introducing WSN in big data systems. Potential applications and technical challenges of networks and infrastructure are presented and explained in accordance with the research areas and objectives. Finally, open issues are presented to discuss promising directions for further research.

16.
Sensors (Basel) ; 17(11)2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29120404

RESUMO

Recently, various unicast routing protocols have been proposed to deliver measured data from the sensor node to the sink node within the predetermined deadline in wireless sensor networks. In parallel with their approaches, some applications demand the specific service, which is based on broadcast to all nodes within the deadline, the feasible real-time traffic model and improvements in energy efficiency. However, current protocols based on either flooding or one-to-one unicast cannot meet the above requirements entirely. Moreover, as far as the authors know, there is no study for the real-time broadcast protocol to support the application-specific traffic model in WSN yet. Based on the above analysis, in this paper, we propose a new (m, k)-firm-based Real-time Broadcast Protocol (FRBP) by constructing a broadcast tree to satisfy the (m, k)-firm, which is applicable to the real-time model in resource-constrained WSNs. The broadcast tree in FRBP is constructed by the distance-based priority scheme, whereas energy efficiency is improved by selecting as few as nodes on a tree possible. To overcome the unstable network environment, the recovery scheme invokes rapid partial tree reconstruction in order to designate another node as the parent on a tree according to the measured (m, k)-firm real-time condition and local states monitoring. Finally, simulation results are given to demonstrate the superiority of FRBP compared to the existing schemes in terms of average deadline missing ratio, average throughput and energy consumption.

17.
Sensors (Basel) ; 17(4)2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28387745

RESUMO

Wireless Body Area Networks (WBANs) have attracted research interests from the community, as more promising healthcare applications have a tendency to employ them as underlying network technology. While taking design issues, such as small size hardware as well as low power computing, into account, a lot of research has been proposed to accomplish the given tasks in WBAN. However, since most of the existing works are basically developed by assuming all nodes in the static state, these schemes therefore cannot be applied in real scenarios where network topology between sensor nodes changes frequently and unexpectedly according to human moving behavior. However, as far as the authors know, there is no survey paper to focus on research challenges for mobility support in WBAN yet. To address this deficiency, in this paper, we present the state-of-the-art approaches and discuss the important features of related to mobility in WBAN. We give an overview of mobility model and categorize the models as individual and group. Furthermore, an overview of networking techniques in the recent literature and summary are compiled for comparison in several aspects. The article also suggests potential directions for future research in the field.

18.
Sensors (Basel) ; 18(1)2017 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-29301199

RESUMO

Mobile sink groups play crucial roles to perform their own missions in many wireless sensor network (WSN) applications. In order to support mobility of such sink groups, it is important to design a mechanism for effective discovery of the group in motion. However, earlier studies obtain group region information by periodic query. For that reason, the mechanism leads to significant signaling overhead due to frequent flooding for the query regardless of the group movement. Furthermore, the mechanism worsens the problem by the flooding in the whole expected area. To deal with this problem, we propose a novel mobile sink group support scheme with low communication cost, called Region-Shift-based Mobile Geocasting Protocol (RSMGP). In this study, we utilize the group mobility feature for which members of a group have joint motion patterns. Thus, we could trace group movement by shifting the region as much as partial members move out of the previous region. Furthermore, the region acquisition is only performed at the moment by just deviated members without collaboration of all members. Experimental results validate the improved signaling overhead of our study compared to the previous studies.

19.
Sensors (Basel) ; 15(8): 20373-91, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26295238

RESUMO

Few techniques for guaranteeing a network lifetime have been proposed despite its great impact on network management. Moreover, since the existing schemes are mostly dependent on the combination of disparate parameters, they do not provide additional services, such as real-time communications and balanced energy consumption among sensor nodes; thus, the adaptability problems remain unresolved among nodes in wireless sensor networks (WSNs). To solve these problems, we propose a novel fuzzy logic model to provide real-time communication in a guaranteed WSN lifetime. The proposed fuzzy logic controller accepts the input descriptors energy, time and velocity to determine each node's role for the next duration and the next hop relay node for real-time packets. Through the simulation results, we verified that both the guaranteed network's lifetime and real-time delivery are efficiently ensured by the new fuzzy logic model. In more detail, the above-mentioned two performance metrics are improved up to 8%, as compared to our previous work, and 14% compared to existing schemes, respectively.

20.
Sensors (Basel) ; 15(6): 13222-41, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26057037

RESUMO

Due to the lack of dependency on beacon messages for location exchange, the beaconless geographic routing protocol has attracted considerable attention from the research community. However, existing beaconless geographic routing protocols are likely to generate duplicated data packets when multiple winners in the greedy area are selected. Furthermore, these protocols are designed for a uniform sensor field, so they cannot be directly applied to practical irregular sensor fields with partial voids. To prevent the failure of finding a forwarding node and to remove unnecessary duplication, in this paper, we propose a region-based collision avoidance beaconless geographic routing protocol to increase forwarding opportunities for randomly-deployed sensor networks. By employing different contention priorities into the mutually-communicable nodes and the rest of the nodes in the greedy area, every neighbor node in the greedy area can be used for data forwarding without any packet duplication. Moreover, simulation results are given to demonstrate the increased packet delivery ratio and shorten end-to-end delay, rather than well-referred comparative protocols.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...