Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 102: 105073, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520916

RESUMO

BACKGROUND: The current pipeline for new antibiotics fails to fully address the significant threat posed by drug-resistant Gram-negative bacteria that have been identified by the World Health Organization (WHO) as a global health priority. New antibacterials acting through novel mechanisms of action are urgently needed. We aimed to identify new chemical entities (NCEs) with activity against Klebsiella pneumoniae and Acinetobacter baumannii that could be developed into a new treatment for drug-resistant infections. METHODS: We developed a high-throughput phenotypic screen and selection cascade for generation of hit compounds active against multidrug-resistant (MDR) strains of K. pneumoniae and A. baumannii. We screened compound libraries selected from the proprietary collections of three pharmaceutical companies that had exited antibacterial drug discovery but continued to accumulate new compounds to their collection. Compounds from two out of three libraries were selected using "eNTRy rules" criteria associated with increased likelihood of intracellular accumulation in Escherichia coli. FINDINGS: We identified 72 compounds with confirmed activity against K. pneumoniae and/or drug-resistant A. baumannii. Two new chemical series with activity against XDR A. baumannii were identified meeting our criteria of potency (EC50 ≤50 µM) and absence of cytotoxicity (HepG2 CC50 ≥100 µM and red blood cell lysis HC50 ≥100 µM). The activity of close analogues of the two chemical series was also determined against A. baumannii clinical isolates. INTERPRETATION: This work provides proof of principle for the screening strategy developed to identify NCEs with antibacterial activity against multidrug-resistant critical priority pathogens such as K. pneumoniae and A. baumannii. The screening and hit selection cascade established here provide an excellent foundation for further screening of new compound libraries to identify high quality starting points for new antibacterial lead generation projects. FUNDING: BMBF and GARDP.


Assuntos
Ensaios de Triagem em Larga Escala , Bibliotecas de Moléculas Pequenas , Humanos , Bibliotecas de Moléculas Pequenas/farmacologia , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Escherichia coli , Farmacorresistência Bacteriana Múltipla
3.
Sci Rep ; 12(1): 5635, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379873

RESUMO

Para-aminosalicylic acid (PAS) is an antibiotic that was largely used for the multi-therapy of tuberculosis in the twentieth century. To try to overcome the inconvenience of its low efficacy and poor tolerance, we searched for novel chemical entities able to synergize with PAS using a combination screening against growing axenic Mycobacterium tuberculosis. The screening was performed at a sub-inhibitory concentration of PAS on a library of about 100,000 small molecules. Selected hit compounds were analyzed by dose-response and further probed with an intracellular macrophage assay. Scaffolds with potential additive effect with PAS are reported, opening interesting prospects for mechanism of action studies. We also report here evidence of a yet unknown bio-activation mechanism, involving activation of pyrido[1,2-a]pyrimidin-4-one (PP) derivatives through the Rv3087 protein.


Assuntos
Ácido Aminossalicílico , Mycobacterium tuberculosis , Tuberculose dos Linfonodos , Ácido Aminossalicílico/metabolismo , Ácido Aminossalicílico/farmacologia , Antituberculosos/química , Humanos
4.
J Enzyme Inhib Med Chem ; 37(1): 912-929, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35306933

RESUMO

Trypanothione synthetase (TryS) catalyses the synthesis of N1,N8-bis(glutathionyl)spermidine (trypanothione), which is the main low molecular mass thiol supporting several redox functions in trypanosomatids. TryS attracts attention as molecular target for drug development against pathogens causing severe and fatal diseases in mammals. A drug discovery campaign aimed to identify and characterise new inhibitors of TryS with promising biological activity was conducted. A large compound library (n = 51,624), most of them bearing drug-like properties, was primarily screened against TryS from Trypanosoma brucei (TbTryS). With a true-hit rate of 0.056%, several of the TbTryS hits (IC50 from 1.2 to 36 µM) also targeted the homologue enzyme from Leishmania infantum and Trypanosoma cruzi (IC50 values from 2.6 to 40 µM). Calmidazolium chloride and Ebselen stand out for their multi-species anti-TryS activity at low µM concentrations (IC50 from 2.6 to 13.8 µM). The moieties carboxy piperidine amide and amide methyl thiazole phenyl were identified as novel TbTryS inhibitor scaffolds. Several of the TryS hits presented one-digit µM EC50 against T. cruzi and L. donovani amastigotes but proved cytotoxic against the human osteosarcoma and macrophage host cells (selectivity index ≤ 3). In contrast, seven hits showed a significantly higher selectivity against T. b. brucei (selectivity index from 11 to 182). Non-invasive redox assays confirmed that Ebselen, a multi-TryS inhibitor, induces an intracellular oxidative milieu in bloodstream T. b. brucei. Kinetic and mass spectrometry analysis revealed that Ebselen is a slow-binding inhibitor that modifies irreversible a highly conserved cysteine residue from the TryS's synthetase domain. The most potent TbTryS inhibitor (a singleton containing an adamantine moiety) exerted a non-covalent, non-competitive (with any of the substrates) inhibition of the enzyme. These data feed the drug discovery pipeline for trypanosomatids with novel and valuable information on chemical entities with drug potential.


Assuntos
Amida Sintases/antagonistas & inibidores , Antineoplásicos/farmacologia , Antiprotozoários/farmacologia , Leishmania infantum/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Amida Sintases/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Antiprotozoários/síntese química , Antiprotozoários/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leishmania infantum/enzimologia , Macrófagos/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Trypanosoma cruzi/enzimologia
5.
J Infect Dis ; 225(5): 777-784, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34850034

RESUMO

BACKGROUND: There are limited data directly comparing immune responses to vaccines and to natural infections with coronavirus disease 2019 (COVID-19). This study assessed the immunogenicity of the BNT162b2 and ChAdOx1 nCoV-19 vaccines over a 3-month period and compared the immune responses with those to natural infections. METHOD: We enrolled healthcare workers who received BNT162b2 or ChAdOx1 nCoV-19 vaccines and patients with confirmed COVID-19 and then measured S1 immunoglobulin (Ig) G and neutralizing antibodies and T-cell responses. RESULTS: A total of 121 vaccinees and 26 patients with confirmed COVID-19 were analyzed. After the second dose, the BNT162b2 vaccine yielded S1 IgG antibody responses similar to those achieved with natural infections (mean IgG titer [standard deviation], 2241 [899] vs 2601 [5039]; P = .68) but significantly stronger than responses to the ChAdOx1 vaccine (174 [96]; P < .001). The neutralizing antibody titer generated by BNT162b2 was 6-fold higher than that generated by ChAdOx1 but lower than that by natural infection. T-cell responses persisted for 3 months with BNT162b2 and natural infection but decreased with ChAdOx1. CONCLUSIONS: Antibody responses after the second dose of BNT162b2 are higher than after the second dose of ChAdOx1 and like those occurring after natural infection. T-cell responses are maintained longer in BNT162b2 vaccinees than in ChAdOx1 vaccinees.


Assuntos
Vacina BNT162/imunologia , COVID-19/prevenção & controle , ChAdOx1 nCoV-19/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos/imunologia , Vacina BNT162/administração & dosagem , Vacina BNT162/efeitos adversos , COVID-19/epidemiologia , COVID-19/imunologia , ChAdOx1 nCoV-19/administração & dosagem , ChAdOx1 nCoV-19/efeitos adversos , Feminino , Humanos , Imunoglobulina G , Masculino , Pessoa de Meia-Idade , Vacinação
6.
Antibiotics (Basel) ; 10(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34827309

RESUMO

The continuous rise of antimicrobial resistance urgently demands new therapeutic agents for human health. Drug repurposing is an attractive strategy that could significantly save time delivering new antibiotics to clinics. We screened 182 US Food and Drug Administration (FDA)-approved drugs to identify potential antibiotic candidates against Staphylococcus aureus, a major pathogenic bacterium. This screening revealed the significant antibacterial activity of three small molecule drugs against S. aureus: (1) LDK378 (Ceritinib), an anaplastic lymphoma kinase (ALK) inhibitor for the treatment of lung cancer, (2) dronedarone HCl, an antiarrhythmic drug for the treatment of atrial fibrillation, and (3) eltrombopag, a thrombopoietin receptor agonist for the treatment of thrombocytopenia. Among these, eltrombopag showed the highest potency against not only a drug-sensitive S. aureus strain but also 55 clinical isolates including 35 methicillin-resistant S. aureus (Minimum inhibitory concentration, MIC, to inhibit 50% growth [MIC50] = 1.4-3.2 mg/L). Furthermore, we showed that eltrombopag inhibited bacterial growth in a cell infection model and reduced bacterial loads in infected mice, demonstrating its potential as a new antibiotic agent against S. aureus that can overcome current antibiotic resistance.

7.
Lab Chip ; 21(10): 1974-1986, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34008588

RESUMO

Microwells are used in studies to mimic the in vivo environment through an in vitro environment by generating three-dimensional cell spheroids. These microwells have been fabricated in various shapes using different methods according to the research purpose. However, because all microwells up to now have an open top, it has been difficult to culture spheroids of floating cells due to their low density, such as human adipose-derived stem cells (hASCs) that differentiate into adipocytes. Therefore, the labor-intensive hanging droplet method has been mainly used for the study of adipocytes. Here, we introduce a sigma-well, which is a microwell in the shape of the Greek letter sigma (σ) with a roof. Because of its unique shape, the sigma-well is advantageous for the culture of floating cells by reducing cell loss and external interference. The sigma-well was fabricated using the principle of surface tension of polydimethylsiloxane as well as air trapping and thermal expansion. Unlike conventional microwells, because the center of the bottom surface and the inlet of the sigma-well are not located on the same line and have a difference of approximately 218 µm, the spheroids are cultured more stably and may not escape the cavity. In this study, hASC and adipocyte spheroids differentiated using these sigma-wells were successfully cultured. In addition, through cytokine diffusion simulation, it was confirmed that the diffusion and mass transfer in the sigma-well was lower than that in the conventional microwell. It is expected that the morphological features of the sigma-well, which cannot be easily obtained by other methods, can be beneficial for the study of buoyant cell types such as adipocytes.

8.
Immune Netw ; 21(6): e41, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35036028

RESUMO

Correlation between vaccine reactogenicity and immunogenicity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unclear. Thus, we investigated to determine whether the reactogenicity after coronavirus disease 2019 vaccination is associated with antibody (Ab) titers and T cell responses. This study was prospective cohort study done with 131 healthcare workers at tertiary center in Seoul, South Korea. The degrees of the local reactions after the 1st and 2nd doses of ChAdOx1 nCov-19 (ChAdOx1) vaccination were significantly associated with the S1-specific IgG Ab titers (p=0.003 and 0.01, respectively) and neutralizing Ab (p=0.04 and 0.10, respectively) in age- and sex-adjusted multivariate analysis, whereas those after the BNT162b2 vaccination did not show significant associations. T cell responses did not show significant associations with the degree of reactogenicity after the ChAdOx1 vaccination or the BNT162b2 vaccination. Thus, high degree of local reactogenicity after the ChAdOx1 vaccine may be used as an indicator of strong humoral immune responses against SARS-CoV-2.

9.
Biochem Biophys Res Commun ; 527(3): 709-715, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32423828

RESUMO

Bcl-2 family proteins play key roles in tumor initiation, progression, and resistance to therapy. Therefore, the protein-protein interactions (PPIs) between the pro-survival proteins, B-cell lymphoma (Bcl)-2 and Bcl-xL, and the pro-apoptotic proteins, Bax and Bak, could be attractive therapeutic targets for anti-cancer drug discovery. Here, we found new small molecules, BIP-A1001 and BIP-A2001 that modulated Bak/Bax and Bcl-xL interactions by combining the Nanoluc/YFP-based bioluminescence resonance energy transfer (BRET) assay with structure based virtual screening. In addition, we chose compounds with similar structures to BIP-A1001 and BIP-A2001 and tested their inhibitory effects using the BRET assay as a dose-response function. The results indicated that identifying compounds that inhibit interactions between Bak/Bax and Bcl-xL could be a promising approach to enhance cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Desenho de Fármacos , Descoberta de Drogas/métodos , Transferência de Energia , Células HEK293 , Humanos , Medições Luminescentes/métodos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Bibliotecas de Moléculas Pequenas/química , Proteína Killer-Antagonista Homóloga a bcl-2/antagonistas & inibidores , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/antagonistas & inibidores , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo
10.
Biofabrication ; 10(4): 045003, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30074487

RESUMO

A cell spheroid culture has the benefit of simulating in vivo three-dimensional cell environments. Microwell systems have been developed to mass-produce large quantities of uniform spheroids, and are frequently used in research areas, such as cell biology, anticancer drug development, and regenerative therapy. Recently reported concave-bottomed microwell systems have delivered more benefits in producing spheroids of higher quality and facilitating more effective research. However, microwell fabrication methods are often complicated or expensive, and there are inherent limitations in the functions and characteristics of existing microwells. Therefore, further studies on concave microwell systems are required. In this study, we fabricate spherical microwells with funnel-shaped entrance structures for spheroid culture; the shape is an upside-down omega ([Formula: see text]), and is thus named 'Omega-well'. The Omega-well array is fabricated using the capillary action of liquid polymer on the pins of a computer central processing unit, which is accomplished without requiring expensive materials or difficult procedures. Various characteristic analyses are performed by experiments and computer simulation. It is demonstrated that cell loss is minimized during cell seeding, a produced spheroid does not easily escape, and that crosstalk between microwells is significantly reduced. The novel fabrication method and Omega-well platform proposed in this study are highly practical, and thus will be useful tools in biology and pharmaceutical labs.


Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Computadores , Microtecnologia/instrumentação , Microtecnologia/métodos , Esferoides Celulares/citologia , Simulação por Computador , Citocinas/metabolismo , Difusão , Dimetilpolisiloxanos/química , Fibroblastos/citologia , Humanos , Células-Tronco/citologia , Temperatura
11.
Nanomaterials (Basel) ; 4(3): 813-826, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28344250

RESUMO

Tuberculosis is a major problem in public health. While new effective treatments to combat the disease are currently under development, they tend suffer from poor solubility often resulting in low and/or inconsistent oral bioavailability. Mesoporous materials are here investigated in an in vitro intracellular assay, for the effective delivery of compound PA-824; a poorly soluble bactericidal agent being developed against Tuberculosis (TB). Mesoporous materials enhance the solubility of PA-824; however, this is not translated into a higher antibacterial activity in TB-infected macrophages after 5 days of incubation, where similar values are obtained. The lack of improved activity may be due to insufficient release of the drug from the mesopores in the context of the cellular environment. However, these results show promising data for the use of mesoporous particles in the context of oral delivery with expected improvements in bioavailability.

12.
Plant Cell Physiol ; 46(8): 1246-54, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15927941

RESUMO

Auxin plays many crucial roles in the course of plant growth and development, such as hook opening, leaf expansion and inhibition of mesocotyl elongation. Although its mechanism of action has not been clarified at the molecular level, recent studies have indicated that auxin triggers the induction of a number of genes known as primary auxin-responsive genes. Hence, the identification of the regulatory components in auxin-mediated cellular responses would help to elucidate the mechanism of the action of this hormone in plant growth and development. NDPK2 encodes a nucleoside diphosphate kinase 2 (NDPK2) in Arabidopsis. We aim to elucidate the possible role of NDPK2 in auxin-related cellular processes, in view of the finding that a ndpk2 mutant displays developmental defects associated with auxin. Interestingly, the ndpk2 mutant exhibits defects in cotyledon development and increased sensitivity to an inhibitor of polar auxin transport (naphthylphthalamic acid; NPA). Consistent with this phenotype, the transcript levels of specific auxin-responsive genes were reduced in the ndpk2 mutant plants treated with auxin. The amount of auxin transported from the shoot apex to the shoot/root transition zone of ndpk2 mutant plants was increased, compared with that in the wild-type plants. These results collectively suggest that NDPK2 appears to participate in auxin-regulated processes, partly through the modulation of auxin transport.


Assuntos
Ácidos Indolacéticos/fisiologia , Núcleosídeo-Difosfato Quinase/fisiologia , Desenvolvimento Vegetal , Expressão Gênica , Luz , Núcleosídeo-Difosfato Quinase/genética , Fitocromo/fisiologia , Plantas/genética , RNA Mensageiro/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...