Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 162(8): 2333-44, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20559754

RESUMO

Seven Escherichia coli strains, which were metabolically engineered with carotenoid biosynthetic pathways, were systematically compared in order to investigate the strain-specific formation of carotenoids of structural diversity. C30 acyclic carotenoids, diaponeurosporene and diapolycopene were well produced in all E. coli strains tested. However, the C30 monocyclic diapotorulene formation was strongly strain dependent. Reduced diapotorulene formation was observed in the E. coli strain Top10, MG1655, and MDS42 while better formation was observed in the E. coli strain JM109, SURE, DH5a, and XL1-Blue. Interestingly, C40 carotenoids, which have longer backbones than C30 carotenoids, also showed strain dependency as C30 diapotorulene did. Quantitative analysis showed that the SURE strain was the best producer for C40 acyclic lycopene, C40 dicyclic ß-carotene, and C30 monocyclic diapotorulene. Of the seven strains examined, the highest volumetric productivity for most of the carotenoids structures was observed in the recombinant SURE strain. In conclusion, we showed that recombinant hosts and carotenoid structures influenced carotenoid productions significantly, and this information can serve as the basis for the subsequent development of microorganisms for carotenoids of interest.


Assuntos
Carotenoides/biossíntese , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Genética/métodos , Vias Biossintéticas , Carotenoides/química , Escherichia coli/crescimento & desenvolvimento , Licopeno , Especificidade da Espécie , beta Caroteno/biossíntese
2.
Biotechnol Bioeng ; 89(7): 815-21, 2005 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-15688358

RESUMO

We report a novel method of electrochemical signaling from antigen-antibody interactions at immunoelectrodes with bioelectrocatalyzed enzymatic signal amplification. For the immunosensing surface construction, a poly(amidoamine) G4-dendrimer was employed not only as a building block for the electrode surface modification but also as a matrix for ligand functionalization. As a model biorecognition reaction, the dinitrophenyl (DNP) antigen-functionalized electrode was fabricated and an anti-DNP antibody was used. Glucose oxidase (GOX) was chosen to amplify electrochemical signal by enzymatic catalysis. The signal amplification strategy introduced in this study is based on the back-filling immobilization of biocatalytic enzyme to the immunosensor surface, circumventing the use of an enzyme-labeled antibody. The non-labeled native antibody was biospecifically bound to the immobilized ligand, and the activated enzyme (periodate-treated GOX) reacted and "back-filled" the remaining surface amine groups on the dendrimer layer by an imine formation reaction. From the bioelectrocatalyzed signal registration with the immobilized GOX, the surface density of biospecifically bound antibody could be estimated. The DNP functionalization reaction was optimized to facilitate the antibody recognition and signaling reactions, and approximately 6% displacement of surface amine to DNP was found to be an optimum. From quartz crystal microbalance measurement, immunosensing reaction timing and the surface inertness to the nonspecific biomolecular binding were tested. By changing the surface functionalization level of DNP in the calibration experiments, immunosensors exhibited different dynamic detection ranges and limits of detection, supporting the capability of parameters modulation for the immunosensors. For the anti-DNP antibody assay, the fabricated immunosensor having 65% functionalization ratio exhibited the linear detection range of 10(-4) to 0.1 g/L protein and a limit of detection around 2 x 10(-5) g/L.


Assuntos
Técnicas Biossensoriais , Enzimas Imobilizadas , Glucose Oxidase/metabolismo , Imunoensaio/métodos , 2,4-Dinitrofenol/química , Anticorpos/análise , Reações Antígeno-Anticorpo , Catálise , Eletroquímica , Eletrodos , Poliaminas/química , Quartzo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...