Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 21(16): 6813-6819, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34379413

RESUMO

Copper (Cu) is a catalyst broadly used in industry for hydrogenation of carbon dioxide, which has broad implications for environmental sustainability. An accurate understanding of the degeneration behavior of Cu catalysts under operando conditions is critical for uncovering the failure mechanism of catalysts and designing novel ones with optimized performance. Despite the widespread use of these materials, their failure mechanisms are not well understood because conventional characterization techniques lack the necessary time and spatial resolution to capture these complex behaviors. In order to overcome these challenges, we carried out transmission electron microscopy (TEM) with a specialized in situ gas environmental holder, which allows us to unravel the dynamic behavior of the Cu nanowires (NWs) in operando. The failure process of these nanoscale Cu catalysts under CO2 atmosphere were tracked and further rationalized based on our numerical modeling using phase-field methods.

2.
Phys Rev E ; 101(2-1): 022802, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32168680

RESUMO

The kinetics of oxidation is examined using a phase-field model of electrochemistry when the oxide film is smaller than the Debye length. As a test of the model, the phase-field approach recovers the results of classical Wagner diffusion-controlled oxide growth when the interfacial mobility of the oxide-metal interface is large and the films are much thicker than the Debye length. However, for small interfacial mobilities, where the growth is reaction controlled, we find that the film increases in thickness linearly in time, and that the phase-field model naturally leads to an electrostatic overpotential at the interface that affects the prefactor of the linear growth law. Since the interface velocity decreases with the distance from the oxide vapor, for a fixed interfacial mobility, the film will transition from reaction- to diffusion-controlled growth at a characteristic thickness. For thin films, we find that in the limit of high interfacial mobility we recover a Wagner-type parabolic growth law in the limit of a composition-independent mobility. A composition-dependent mobility leads to a nonparabolic kinetics at small thickness, but for the materials parameters chosen, the deviation from parabolic kinetics is small. Unlike classical oxidation models, we show that the phase-field model can be used to examine the dynamics of nonplanar oxide interfaces that are routinely observed in experiment. As an illustration, we examine the evolution of nonplanar interfaces when the oxide is growing only by anion diffusion and find that it is morphologically stable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...