Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9872, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38684757

RESUMO

The occurrence frequency of East Asia's extreme hot day in boreal spring has increased since 1979. Using observational data and a Linear baroclinic model experiment, our study suggests that the occurrence of hot day is mainly due to anomalous high pressure over East Asia associated with a horizontal stationary wave train originating from a positive phase of the North Atlantic Tripole (NAT) sea surface temperature (SST) in spring. The effect of a positive phase of the NAT SST is evident in the 2000s, apparently associated with the linear trend of the North Atlantic SST like a positive phase of the NAT SST. Before 2000s, in contrast, SST forcing in the Indian Ocean and eastern tropical Pacific, which is associated with a negative phase of the NAT SST, may contribute to induce the East Asian hot days through atmospheric teleconnections. This implies that the relationship between a positive phase of the NAT SST and the occurrence of hot days in East Asia has been changed during the 2000s.

2.
Sci Total Environ ; 914: 169714, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38176554

RESUMO

Severe PM10 (particulate matter with a diameter of <10 µm) events in South Korea are known to be caused by stable atmospheric circulation conditions related to high-pressure anomalies in the upper troposphere. However, research on why these atmospheric circulation patterns occur is unknown. In this study, we propose new large-scale teleconnection pathways that cause severe PM10 events during the midwinter in South Korea. This study investigated instances of extremely high (EH)-PM10 in South Korea during mid-winter and examined the corresponding atmospheric teleconnection patterns to identify the factors contributing to EH-PM10 events. K-means clustering analysis revealed that EH-PM10 instances were associated with two large-scale teleconnection patterns. Cluster 1 exhibited a wave train pattern originating in the North Atlantic that developed from Eurasia to the Korean Peninsula. Cluster 2 was associated with a wave-like teleconnection pattern from the Barents-Kara Sea to the Korean Peninsula. The Rossby waves, triggered by the North Atlantic and the Arctic, propagated and weakened the surface pressure system. This led to a high-pressure anomaly over the Korean Peninsula, reducing atmospheric ventilation and causing a rapid increase in PM10 concentration within a few days. Furthermore, an experiment involving a linear baroclinic model established that atmospheric forcing in upstream regions has the potential to induce large-scale atmospheric teleconnection patterns, resulting in EH-PM10 cases in South Korea. These findings emphasize the ventilation effect and transport of PM10 concentrations modulated by two large-scale teleconnection patterns originating from the Arctic and North Atlantic, leading to EH-PM10 events in South Korea. Understanding this combined phenomenon may assist in the implementation of emission reduction measures based on the results of short-term forecasts of severe PM10 events.

3.
Sci Rep ; 12(1): 18025, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302795

RESUMO

This study investigates the contributing factors of East Asian heatwaves (EAHWs) linked to the Arctic-Siberian Plain (ASP) over the past 42 years (1979-2020). EAHWs are mainly affected by two time scales of variabilities: long-term externally forced and interannual variabilities. The externally forced EAHWs are attributed to the increasing global warming trend, while their interannual variability is related to the circumglobal teleconnection (CGT) and the ASP teleconnection patterns. In addition to the CGT, the Rossby wave energy originating from the ASP propagates to East Asia through the upper troposphere, amplifying the EAHWs. The stationary high pressure in the ASP is generated by vorticity advection in the upper troposphere. Enhanced surface radiative heating and evaporation on the ASP surface increase the specific humidity and temperature, amplifying the thermal high pressure via positive water vapor feedback. Thermal high-pressure amplified by land-atmosphere interactions in the ASP during the peak summer season leads to EAHWs by the propagation of stationary Rossby wave energy. The results indicate that our enhanced understanding of the ASP teleconnection can improve forecasting of the EAHWs not only on a sub-seasonal time scale but also in future projections of global climate models.


Assuntos
Atmosfera , Aquecimento Global , Estações do Ano , Temperatura , Vapor
4.
Environ Pollut ; 290: 118051, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34461414

RESUMO

In this study, we investigated the daily variability of PM10 concentrations in January in Korea during the past 19 years (2001-2019), as well as the associated atmospheric circulation patterns. The daily PM10 concentrations were classified into three cases: low (L; < 50 µg/m3), high (H; 50-100 µg/m3), and extremely high (EH; ≥ 100 µg/m3). We found that the strength of the East Asian winter monsoon influenced the PM10 variability in the L and H cases. However, the EH cases were strongly influenced by the rapid growth of barotropic warming (anticyclonic anomaly) over the eastern North Atlantic and Northern Europe (ENE), and the stationary Rossby waves grew rapidly over Eurasia within only four days. Analysis of the quasi-geostrophic geopotential tendency budget revealed that the anticyclonic anomaly over the ENE was enhanced by vorticity advection. Linear baroclinic model experiments confirmed that vorticity forcing over the ENE induces favorable atmospheric conditions for the occurrence of EH PM10 events in East Asia. As a result, the PM10 concentration sharply increased sharply by approximately three times over four days. This study suggests that understanding atmospheric teleconnections between the ENE and East Asia can effectively predict the occurrence of EH PM10 events in Korea, helping to reduce the human health risks from atmospheric pollution.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Europa (Continente) , Humanos , Material Particulado/análise , República da Coreia , Estações do Ano
5.
Sci Rep ; 11(1): 12911, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145363

RESUMO

The negative impact of extreme high-temperature days (EHDs) on people's livelihood has increased over the past decades. Therefore, an improved understanding of the fundamental mechanisms of EHDs is imperative to mitigate this impact. Herein, we classify the large-scale atmospheric circulation patterns associated with EHDs that occurred in South Korea from 1982 to 2018 using a self-organizing map (SOM) and investigate the dynamic mechanism for each cluster pattern through composite analysis. A common feature of all SOM clusters is the positive geopotential height (GPH) anomaly over the Korean Peninsula, which provides favorable conditions for EHDs through adiabatic warming caused by anomalous downward motion. Results show that Cluster 1 (C1) is related to the eastward-propagating wave train in the mid-latitude Northern Hemisphere, while Cluster 2 (C2) and 3 (C3) are influenced by a northward-propagating wave train forced by enhanced convection in the subtropical western North Pacific (WNP). Compared to C2, C3 exhibits strong and eastward-extended enhanced convection over the subtropical WNP, which generates an anomalous high-pressure system over the southern part of the Kamchatka Peninsula, reinforcing EHDs via atmospheric blocking. Our results can contribute to the understanding of East Asia climate variability because wave trains influence the climate dynamics of this region.

6.
J Geophys Res Atmos ; 120(24): 12474-12485, 2015 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-27818850

RESUMO

Possible cause of an abrupt warming in winter mean surface air temperature in the midlatitudes of the Northern Hemisphere in the late 1980s is investigated using observation and reanalysis data. To determine the timing of abrupt warming, we use a regime shift index based on detection of the largest significant differences between the mean values of two contiguous periods. Results show that the abrupt warming occurred in association with a regime shift after the 1980's in which the zonal mean sea level pressure (SLP) is significantly increased (decreased) at the latitude 25-35°N (60-70°N), in the form of north-south dipole-like SLP anomaly spanning the subtropics and high latitude. The dipole SLP anomaly can be attributed to a northward expansion of Hadley cell, a poleward broadening and intensification of the Ferrel cell, coupled with a collapse of polar cell. During the abrupt warming, strong anomalous southerly warm advection at the surface was induced by an enhanced and expanded Ferrel circulation, in association with a northward and downward shift of maximum center of northward eddy heat flux over the midlatitudes. An intensification of polar jet subsequent to regime shift may be instrumental in sustaining the warming up to more than 5 years.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...