Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(8)2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34440893

RESUMO

The heartbeat is initiated by pacemaker cells residing in the sinoatrial node (SAN). SAN cells generate spontaneous action potentials (APs), i.e., normal automaticity. The sympathetic nervous system increases the heart rate commensurate with the cardiac output demand via stimulation of SAN ß-adrenergic receptors (ßAR). While SAN cells reportedly represent a highly heterogeneous cell population, the current dogma is that, in response to ßAR stimulation, all cells increase their spontaneous AP firing rate in a similar fashion. The aim of the present study was to investigate the cell-to-cell variability in the responses of a large population of SAN cells. We measured the ßAR responses among 166 single SAN cells isolated from 33 guinea pig hearts. In contrast to the current dogma, the SAN cell responses to ßAR stimulation substantially varied. In each cell, changes in the AP cycle length were highly correlated (R2 = 0.97) with the AP cycle length before ßAR stimulation. While, as expected, on average, the cells increased their pacemaker rate, greater responses were observed in cells with slower basal rates, and vice versa: cells with higher basal rates showed smaller responses, no responses, or even decreased their rate. Thus, ßAR stimulation synchronized the operation of the SAN cell population toward a higher average rate, rather than uniformly shifting the rate in each cell, creating a new paradigm of ßAR-driven fight-or-flight responses among individual pacemaker cells.


Assuntos
Potenciais de Ação/fisiologia , Animais , Cobaias , Frequência Cardíaca/fisiologia , Miócitos Cardíacos/fisiologia , Nó Sinoatrial/metabolismo , Nó Sinoatrial/fisiologia
2.
Front Physiol ; 12: 596832, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897445

RESUMO

Action potential (AP) firing rate and rhythm of sinoatrial nodal cells (SANC) are controlled by synergy between intracellular rhythmic local Ca2+ releases (LCRs) ("Ca2+ clock") and sarcolemmal electrogenic mechanisms ("membrane clock"). However, some SANC do not fire APs (dormant SANC). Prior studies have shown that ß-adrenoceptor stimulation can restore AP firing in these cells. Here we tested whether this relates to improvement of synchronization of clock coupling. We characterized membrane potential, ion currents, Ca2+ dynamics, and phospholamban (PLB) phosphorylation, regulating Ca2+ pump in enzymatically isolated single guinea pig SANC prior to, during, and following ß-adrenoceptor stimulation (isoproterenol) or application of cell-permeant cAMP (CPT-cAMP). Phosphorylation of PLB (Serine 16) was quantified in the same cells following Ca2+ measurement. In dormant SANC LCRs were small and disorganized at baseline, membrane potential was depolarized (-38 ± 1 mV, n = 46), and ICaL, If, and IK densities were smaller vs SANC firing APs. ß-adrenoceptor stimulation or application of CPT-cAMP led to de novo spontaneous AP generation in 44 and 46% of dormant SANC, respectively. The initial response was an increase in size, rhythmicity and synchronization of LCRs, paralleled with membrane hyperpolarization and small amplitude APs (rate ∼1 Hz). During the transition to steady-state AP firing, LCR size further increased, while LCR period shortened. LCRs became more synchronized resulting in the growth of an ensemble LCR signal peaked in late diastole, culminating in AP ignition; the rate of diastolic depolarization, AP amplitude, and AP firing rate increased. ICaL, IK, and If amplitudes in dormant SANC increased in response to ß-adrenoceptor stimulation. During washout, all changes reversed in order. Total PLB was higher, but the ratio of phosphorylated PLB (Serine 16) to total PLB was lower in dormant SANC. ß-adrenoceptor stimulation increased this ratio in AP-firing cells. Thus, transition of dormant SANC to AP firing is linked to the increased functional coupling of membrane and Ca2+ clock proteins. The transition occurs via (i) an increase in cAMP-mediated phosphorylation of PLB accelerating Ca2+ pumping, (ii) increased spatiotemporal LCR synchronization, yielding a larger diastolic LCR ensemble signal resulting in an earlier increase in diastolic INCX; and (iii) increased current densities of If, ICaL, and IK.

3.
Cell Calcium ; 74: 168-179, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30092494

RESUMO

Current understanding of how cardiac pacemaker cells operate is based mainly on studies in isolated single sinoatrial node cells (SANC), specifically those that rhythmically fire action potentials similar to the in vivo behavior of the intact sinoatrial node. However, only a small fraction of SANC exhibit rhythmic firing after isolation. Other SANC behaviors have not been studied. Here, for the first time, we studied all single cells isolated from the sinoatrial node of the guinea pig, including traditionally studied rhythmically firing cells ('rhythmic SANC'), dysrhythmically firing cells ('dysrhythmic SANC') and cells without any apparent spontaneous firing activity ('dormant SANC'). Action potential-induced cytosolic Ca2+ transients and spontaneous local Ca2+ releases (LCRs) were measured with a 2D camera. LCRs were present not only in rhythmically firing SANC, but also in dormant and dysrhythmic SANC. While rhythmic SANC were characterized by large LCRs synchronized in space and time towards late diastole, dysrhythmic and dormant SANC exhibited smaller LCRs that appeared stochastically and were widely distributed in time. ß-adrenergic receptor (ßAR) stimulation increased LCR size and synchronized LCR occurrences in all dysrhythmic and a third of dormant cells (25 of 75 cells tested). In response to ßAR stimulation, these dormant SANC developed automaticity, and LCRs became coupled to spontaneous action potential-induced cytosolic Ca2+ transients. Conversely, dormant SANC that did not develop automaticity showed no significant change in average LCR characteristics. The majority of dysrhythmic cells became rhythmic in response to ßAR stimulation, with the rate of action potential-induced cytosolic Ca2+ transients substantially increasing. In summary, isolated SANC can be broadly categorized into three major populations: dormant, dysrhythmic, and rhythmic. We interpret our results based on simulations of a numerical model of SANC operating as a coupled-clock system. On this basis, the two previously unstudied dysrhythmic and dormant cell populations have intrinsically partially or completely uncoupled clocks. Such cells can be recruited to fire rhythmically in response to ßAR stimulation via increased rhythmic LCR activity and ameliorated coupling between the Ca2+ and membrane clocks.


Assuntos
Relógios Biológicos/fisiologia , Sinalização do Cálcio/fisiologia , Miócitos Cardíacos/fisiologia , Nó Sinoatrial/citologia , Nó Sinoatrial/fisiologia , Animais , Células Cultivadas , Cobaias , Masculino
4.
Sci Signal ; 11(534)2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895616

RESUMO

The spontaneous rhythmic action potentials generated by the sinoatrial node (SAN), the primary pacemaker in the heart, dictate the regular and optimal cardiac contractions that pump blood around the body. Although the heart rate of humans is substantially slower than that of smaller experimental animals, current perspectives on the biophysical mechanisms underlying the automaticity of sinoatrial nodal pacemaker cells (SANCs) have been gleaned largely from studies of animal hearts. Using human SANCs, we demonstrated that spontaneous rhythmic local Ca2+ releases generated by a Ca2+ clock were coupled to electrogenic surface membrane molecules (the M clock) to trigger rhythmic action potentials, and that Ca2+-cAMP-protein kinase A (PKA) signaling regulated clock coupling. When these clocks became uncoupled, SANCs failed to generate spontaneous action potentials, showing a depolarized membrane potential and disorganized local Ca2+ releases that failed to activate the M clock. ß-Adrenergic receptor (ß-AR) stimulation, which increases cAMP concentrations and clock coupling in other species, restored spontaneous, rhythmic action potentials in some nonbeating "arrested" human SANCs by increasing intracellular Ca2+ concentrations and synchronizing diastolic local Ca2+ releases. When ß-AR stimulation was withdrawn, the clocks again became uncoupled, and SANCs reverted to a nonbeating arrested state. Thus, automaticity of human pacemaker cells is driven by a coupled-clock system driven by Ca2+-cAMP-PKA signaling. Extreme clock uncoupling led to failure of spontaneous action potential generation, which was restored by recoupling of the clocks. Clock coupling and action potential firing in some of these arrested cells can be restored by ß-AR stimulation-induced augmentation of Ca2+-cAMP-PKA signaling.


Assuntos
Potenciais de Ação , Relógios Biológicos , Cálcio/metabolismo , Coração/fisiologia , Receptores Adrenérgicos beta/metabolismo , Nó Sinoatrial/fisiologia , Sinalização do Cálcio , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Acoplamento Excitação-Contração , Humanos , Receptores Adrenérgicos beta/genética , Nó Sinoatrial/citologia
5.
PLoS One ; 12(9): e0185222, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28945810

RESUMO

Uptake and release calcium from the sarcoplasmic reticulum (SR) (dubbed "calcium clock"), in the form of spontaneous, rhythmic, local diastolic calcium releases (LCRs), together with voltage-sensitive ion channels (membrane clock) form a coupled system that regulates the action potential (AP) firing rate. LCRs activate Sodium/Calcium exchanger (NCX) that accelerates diastolic depolarization and thus participating in regulation of the time at which the next AP will occur. Previous studies in rabbit SA node cells (SANC) demonstrated that the basal AP cycle length (APCL) is tightly coupled to the basal LCR period (time from the prior AP-induced Ca2+ transient to the diastolic LCR occurrence), and that this coupling is further modulated by autonomic receptor stimulation. Although spontaneous LCRs during diastolic depolarization have been reported in SANC of various species (rabbit, cat, mouse, toad), prior studies have failed to detect LCRs in spontaneously beating SANC of guinea-pig, a species that has been traditionally used in studies of cardiac pacemaker cell function. We performed a detailed investigation of whether guinea-pig SANC generate LCRs and whether they play a similar key role in regulation of the AP firing rate. We used two different approaches, 2D high-speed camera and classical line-scan confocal imaging. Positioning the scan-line beneath sarcolemma, parallel to the long axis of the cell, we found that rhythmically beating guinea-pig SANC do, indeed, generate spontaneous, diastolic LCRs beneath the surface membrane. The average key LCR characteristics measured in confocal images in guinea-pig SANC were comparable to rabbit SANC, both in the basal state and in the presence of ß-adrenergic receptor stimulation. Moreover, the relationship between the LCR period and APCL was subtended by the same linear function. Thus, LCRs in guinea-pig SANC contribute to the diastolic depolarization and APCL regulation. Our findings indicate that coupled-clock system regulation of APCL is a general, species-independent, mechanism of pacemaker cell normal automaticity. Lack of LCRs in prior studies is likely explained by technical issues, as individual LCRs are small stochastic events occurring mainly near the cell border.


Assuntos
Sinalização do Cálcio , Nó Sinoatrial/metabolismo , Potenciais de Ação , Animais , Relógios Biológicos , Gatos , Diástole , Cobaias , Técnicas In Vitro , Camundongos , Microscopia Confocal , Microscopia de Vídeo , Coelhos , Receptores Adrenérgicos beta/metabolismo , Sarcolema/metabolismo , Análise de Célula Única , Nó Sinoatrial/citologia
6.
PLoS One ; 12(7): e0179419, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28683095

RESUMO

Local Ca2+ Releases (LCRs) are crucial events involved in cardiac pacemaker cell function. However, specific algorithms for automatic LCR detection and analysis have not been developed in live, spontaneously beating pacemaker cells. In the present study we measured LCRs using a high-speed 2D-camera in spontaneously contracting sinoatrial (SA) node cells isolated from rabbit and guinea pig and developed a new algorithm capable of detecting and analyzing the LCRs spatially in two-dimensions, and in time. Our algorithm tracks points along the midline of the contracting cell. It uses these points as a coordinate system for affine transform, producing a transformed image series where the cell does not contract. Action potential-induced Ca2+ transients and LCRs were thereafter isolated from recording noise by applying a series of spatial filters. The LCR birth and death events were detected by a differential (frame-to-frame) sensitivity algorithm applied to each pixel (cell location). An LCR was detected when its signal changes sufficiently quickly within a sufficiently large area. The LCR is considered to have died when its amplitude decays substantially, or when it merges into the rising whole cell Ca2+ transient. Ultimately, our algorithm provides major LCR parameters such as period, signal mass, duration, and propagation path area. As the LCRs propagate within live cells, the algorithm identifies splitting and merging behaviors, indicating the importance of locally propagating Ca2+-induced-Ca2+-release for the fate of LCRs and for generating a powerful ensemble Ca2+ signal. Thus, our new computer algorithms eliminate motion artifacts and detect 2D local spatiotemporal events from recording noise and global signals. While the algorithms were developed to detect LCRs in sinoatrial nodal cells, they have the potential to be used in other applications in biophysics and cell physiology, for example, to detect Ca2+ wavelets (abortive waves), sparks and embers in muscle cells and Ca2+ puffs and syntillas in neurons.


Assuntos
Algoritmos , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Miócitos Cardíacos/fisiologia , Nó Sinoatrial/fisiologia , Software , Potenciais de Ação/fisiologia , Animais , Canais de Cálcio Tipo L/fisiologia , Cobaias , Frequência Cardíaca/fisiologia , Transporte de Íons/fisiologia , Miócitos Cardíacos/citologia , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Retículo Sarcoplasmático/metabolismo , Nó Sinoatrial/citologia , Trocador de Sódio e Cálcio/fisiologia , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...