Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant ; 9(10): 1415-1427, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27591813

RESUMO

Mutations in Phytochrome Interacting Factors (PIFs) induce a conversion of the endodermal amyloplasts necessary for gravity sensing to plastids with developed thylakoids accompanied by abnormal activation of photosynthetic genes in the dark. In this study, we investigated how PIFs regulate endodermal plastid development by performing comparative transcriptome analysis. We show that both endodermal expression of PIF1 and global expression of the PIF quartet induce transcriptional changes in genes enriched for nuclear-encoded photosynthetic genes such as LHCA and LHCB. Among the 94 shared differentially expressed genes identified from the comparative transcriptome analysis, only 14 genes are demonstrated to be direct targets of PIF1, and most photosynthetic genes are not. Using a co-expression analysis, we identified a direct target of PIF, whose expression pattern shows a strong negative correlation with many photosynthetic genes. We have named this gene REPRESSOR OF PHOTOSYNTHETIC GENES1 (RPGE1). Endodermal expression of RPGE1 rescued the elevated expression of photosynthetic genes found in the pif quadruple (pifQ) mutant and partly restored amyloplast development and hypocotyl negative gravitropism. Taken together, our results indicate that RPGE1 acts downstream of PIF1 in the endodermis to repress photosynthetic genes and regulate plastid development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Gravitropismo/genética , Gravitropismo/fisiologia , Hipocótilo/genética , Hipocótilo/metabolismo , Fotossíntese/genética , Fotossíntese/fisiologia , Plastídeos/genética
2.
Talanta ; 150: 516-24, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26838438

RESUMO

Dimethyl sulphide (DMS) is an important compound in global atmospheric chemistry and climate change. Traceable international standards are essential for measuring accurately the long-term global trend in ambient DMS. However, developing accurate gas standards for sub-nanomole per mole (nmol/mol) mole fractions of DMS in a cylinder is challenging, because DMS is reactive and unstable. In this study, a dynamic dilution method that is traceable and precise was developed to generate sub-nmol/mol DMS gas mixtures with a dynamic dilution system based on sonic nozzles and a long-term (>5 years) stable 10 µmol/mol parent DMS primary standard gas mixtures (PSMs). The dynamic dilution system was calibrated with traceable methane PSMs, and its estimated dilution factors were used to calculate the mole fractions of the dynamically generated DMS gas mixtures. A dynamically generated DMS gas mixture and a 6 nmol/mol DMS PSM were analysed against each other by gas chromatography with flame-ionisation detection (GC/FID) to evaluate the dilution system. The mole fractions of the dynamically generated DMS gas mixture determined against a DMS PSM and calculated with the dilution factor agreed within 1% at 6 nmol/mol. In addition, the dynamically generated DMS gas mixtures at various mole fractions between 0.4 and 11.7 nmol/mol were analysed by GC/FID and evaluated for their linearity. The analytically determined mole fractions showed good linearity with the mole fractions calculated with the dilution factors. Results showed that the dynamic dilution method generates DMS gas mixtures ranging between 0.4 nmol/mol and 12 nmol/mol with relative expanded uncertainties of less than 2%. Therefore, the newly developed dynamic dilution method is a promising reference method for generating sub-nmol/mol DMS gas standards for accurate ambient measurements.

3.
Anal Chem ; 86(5): 2580-9, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24555659

RESUMO

Studies of climate change increasingly recognize the diverse influences of hydrocarbons in the atmosphere, including roles in particulates and ozone formation. Measurements of key nonmethane hydrocarbons (NMHCs) suggest atmospheric mole fractions ranging from low picomoles per mol (ppt) to nanomoles per mol (ppb), depending on location and compound. To accurately establish mole fraction trends and to relate measurement records from many laboratories and researchers, it is essential to have accurate, stable, calibration standards. In February of 2008, the National Institute of Standards and Technology (NIST) developed and reported on picomoles per mol standards containing 18 nonmethane hydrocarbon compounds covering the mole fraction range of 60 picomoles per mol to 230 picomoles per mol. The stability of these gas mixtures was only characterized over a short time period (2 to 3 months). NIST recently prepared a suite of primary standard gas mixtures by gravimetric dilution to ascertain the stability of the 2008 picomoles per mol NMHC standards suite. The data from this recent chromatographic intercomparison of the 2008 to the 2011 suites confirm a much longer stability of almost 5 years for 15 of the 18 hydrocarbons; the double-bonded alkenes of propene, isobutene, and 1-pentene showed instability, in line with previous publications. The agreement between the gravimetric values from preparation and the analytical mole fractions determined from regression illustrate the internal consistency of the suite within ±2 pmol/mol. However, results for several of the compounds reflect stability problems for the three double-bonded hydrocarbons. An international intercomparison on one of the 2008 standards has also been completed. Participants included National Metrology Institutes, United States government laboratories, and academic laboratories. In general, results for this intercomparison agree to within about ±5% with the gravimetric mole fractions of the hydrocarbons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...