Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2404597, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975985

RESUMO

Photomultiplication (PM)-type organic photodetectors (OPDs), which typically form a homogeneous distribution (HD) of n-type dopants in a p-type polymer host (HD PM-type OPDs), have achieved a breakthrough in device responsivity by surpassing a theoretical limit of external quantum efficiency (EQE). However, they face limitations in higher dark current and slower dynamic characteristics compared to p-n heterojunction (p-n HJ) OPDs due to inherent long lifetime of trapped electrons. To overcome this, a new PM-type OPD is developed that demonstrates ultrafast dynamic properties through a vertical phase separation (VPS) strategy between the p-type polymer and n-type acceptor, referred to as VPS PM-type OPDs. Notably, VPS PM-type OPDs show three orders of magnitude increase in -3 dB cut-off frequency (120 kHz) and over a 200-fold faster response time (rising time = 4.8 µs, falling time = 8.3 µs) compared to HD PM-type OPDs, while maintaining high EQE of 1121% and specific detectivity of 2.53 × 1013 Jones at -10 V. The VPS PM-type OPD represents a groundbreaking advancement by demonstrating the coexistence of p-n HJ and PM modes within a single photoactive layer for the first time. This innovative approach holds the potential to enhance both static and dynamic properties of OPDs.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38032313

RESUMO

Suppressing the dark current density (Jd) while maintaining sufficient charge transport is important for improving the specific detectivity (D*) and dynamic characteristics of organic photodetectors (OPDs). In this study, we synthesized three novel small-molecule acceptors (SMAs) densely surrounded by insulating alkyl side chains to minimize the Jd in OPDs. Introducing trialkylated N-annulated perylene diimide as a terminal moiety to the alkylated π-conjugated core structure was highly efficient in suppressing Jd in the devices, resulting in an extremely low Jd of 4.60 × 10-11 A cm-2 and 10-100 times improved D* values in the devices. In addition, SMAs with a geometrically aligned backbone structure exhibited better intermolecular ordering in the blended films, resulting in 3-10 times as high responsivity (R) values in the OPDs. Outstanding OPD performances with a D* of 8.09 × 1012 Jones, -3 dB cutoff frequency of 205.2 kHz, and rising response time of 16 µs were achieved under a 530 nm illumination in photoconductive mode. Geometrically aligned core-terminal SMAs densely surrounded by insulating alkyl side chains are promising for improving the static and dynamic properties of OPDs.

3.
Molecules ; 27(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36364486

RESUMO

Colloidal quantum dots (CQDs) have a unique advantage in realizing near-infrared (NIR) photodetection since their optical properties are readily tuned by the particle size, but CQD-based photodetectors (QPDs) presently show a high dark current density (Jd) and insufficient dynamic characteristics. To overcome these two problems, we synthesized and introduced two types of conjugated polymers (CPs) by replacing the p-type CQD layer in the QPDs. The low dielectric constant and insulating properties of CPs under dark conditions effectively suppressed the Jd in the QPDs. In addition, the energy-level alignment and high-hole mobility of the CPs facilitated hole transport. Therefore, both the responsivity and specific detectivity were highly enhanced in the CP-based QPDs. Notably, the dynamic characteristics of the QPDs, such as the -3 dB cut-off frequency and rising/falling response times, were significantly improved in the CP-based QPDs owing to the sizable molecular ordering and fast hole transport of the CP in the film state as well as the low trap density, well-aligned energy levels, and good interfacial contact in the CP-based devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...