Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38743475

RESUMO

Strain CJN36-1NT, a Gram-stain-positive, non-flagellated, strictly aerobic and short rod-shaped bacterium, was isolated from flowerpot soil sampled in the Jeonju region of the Republic of Korea. Based on 16S rRNA gene sequences and the resulting phylogenetic tree, the strain belonged to the genus Microbacterium. Strain CJN36-1NT contained a chromosome of 3.6 Mbp with a G+C content of 68.5 mol%. The strain grew at 10-37 °C (optimally at 28 °C), at pH 5.0-8.0 (optimally at pH 8.0), and in the presence of 0-7 % NaCl (w/v; optimally with 0 % NaCl). Digital DNA-DNA hybridization, average nucleotide identity and average amino acid identity values between strain CJN36-1NT and its closest related species, Microbacterium protaetiae DFW100M-13T, were 82.0, 81.2, and 23.2 %, respectively. We propose naming this novel species Microbacterium horticulturae sp. nov., with CJN36-1NT (=KACC 23027T=NBRC 116065T) as the type strain.


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Microbacterium , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Microbiologia do Solo , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , República da Coreia , Microbacterium/genética
2.
Small ; 20(26): e2309429, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38553811

RESUMO

Thermally driven fiber actuators are emerging as promising tools for a range of robotic applications, encompassing soft and wearable robots, muscle function restoration, assistive systems, and physical augmentation. Yet, to realize their full potential in practical applications, several challenges, such as a high operational temperature, incorporation of intrinsic self-sensing capabilities for closed-loop feedback control, and reliance on bulky, intricate actuation systems, must be addressed. Here, an Ag nanoparticles-based twisted and coiled fiber actuator that achieves a high contractile actuation of ≈36% is reported at a considerably low operational temperature of ≈83 °C based on a synergistic effect of constituent fiber elements with low glass transition temperatures. The fiber actuator can monitor its contractile actuation in real-time based on the piezoresistive properties inherent to its Ag-based conductive region, demonstrating its proprioceptive sensing capability. By exploiting this capability, the proprioceptive fiber actuator adeptly maintains its intended contractile behavior, even when faced with unplanned external disturbances. To demonstrate the capabilities of the fiber actuator, this study integrates it into a closed-loop feedback-controlled bionic arm as an artificial muscle, offering fresh perspectives on the future development of intelligent wearable devices and soft robotic systems.

3.
Int Immunopharmacol ; 130: 111800, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38447416

RESUMO

p38 MAPK has been implicated in the pathogenesis of rheumatoid arthritis and psoriasis. To assess the therapeutic efficacy of the p38 MAPK inhibitor NJK14047 in the treatment of rheumatoid arthritis and psoriasis, we developed mouse models of collagen-induced rheumatoid arthritis (CIA) and imiquimod-induced psoriasis (IIP). NJK14047 was found to suppress arthritis development and psoriasis symptoms and also suppressed histopathological changes induced by CIA and IIP. Furthermore, we established that CIA and IIP evoked increases in the mRNA expression levels of Th1/Th17 inflammatory cytokines in the joints and skin, which was again suppressed by NJK14047. NJK14047 reversed the enlargement of spleens induced by CIA and IIP as well as increases in the levels of inflammatory cytokine in spleens following induction by CIA and IIP. In human SW982 synovial cells, NJK14047 was found to suppress lipopolysaccharide-induced increases in the mRNA expression of proinflammatory cytokines. NJK14047 inhibition of p38 MAPK suppressed the differentiation of naïve T cells to Th17 and Th1 cells. Our findings in this study provide convincing evidence indicating the therapeutic efficacy of the p38 MAPK inhibitor NJK14047 against CIA and IIP, which we speculate could be associated with the suppression on T-cell differentiation.


Assuntos
Artrite Experimental , Artrite Reumatoide , Inibidores de Proteínas Quinases , Psoríase , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Humanos , Camundongos , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Diferenciação Celular , Citocinas/genética , Citocinas/metabolismo , Imiquimode , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , RNA Mensageiro/metabolismo , Células Th17 , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Camundongos Endogâmicos DBA , Masculino , Linhagem Celular
4.
J Org Chem ; 89(5): 3102-3110, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364274

RESUMO

An approach to 2,3-benzotropone from 1-benzosuberone via palladium(II)-catalyzed aerobic dehydrogenation was developed. This method first provided a catalytic route to various 2,3-benzotropones from their corresponding 1-benzosuberones in good yields. In addition, the reaction could be applied to a one-pot Diels-Alder reaction with maleimide, providing a complex benzobicyclo[3.2.2]nonenone in ≤90% yield. Kinetic analysis supporting our proposed mechanism was also performed, underscoring the robustness of the developed synthetic pathway.

5.
Appl Microbiol Biotechnol ; 108(1): 86, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38189951

RESUMO

Despite the discovery of several bacteria capable of interacting with polymers, the activity of the natural bacterial isolates is limited. Furthermore, there is a lack of knowledge regarding the development of bioprocesses for polyethylene (PE) degradation. Here, we report a bioprocess using pseudo-resting cells for efficient degradation of PE. The bacterial strain Acinetobacter nosocomialis was isolated from PE-containing landfills and characterized using low-density PE (LDPE) surface oxidation when incubated with LDPE. We optimized culture conditions to generate catalytic pseudo-resting cells of A. nosocomialis that are capable of degrading LDPE films in a bioreactor. After 28 days of bioreactor operation using pseudo-resting cells of A. nosocomialis, we observed the formation of holes on the PE film (39 holes per 217 cm2, a maximum diameter of 1440 µm). This study highlights the potential of bacteria as biocatalysts for the development of PE degradation processes. KEY POINTS: • New bioprocess has been proposed to degrade polyethylene (PE). • Process with pseudo-resting cells results in the formation of holes in PE film. • We demonstrated PE degradation using A. nosocomialis as a biocatalyst.


Assuntos
Acinetobacter , Polietileno , Reatores Biológicos , Catálise
6.
Life Sci ; 340: 122424, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38242497

RESUMO

Inflammatory Bowel Disease (IBD) is a chronic and relapsing inflammatory condition characterized by severe symptoms such as diarrhea, fatigue, and weight loss. Growing evidence underscores the direct involvement of the nuclear factor-erythroid 2-related factor 2 (NRF2) in the development and progression of IBD, along with its associated complications, including colorectal cancer. The NRF2 pathway plays a crucial role in cellular responses to oxidative stress, and dysregulation of this pathway has been implicated in IBD. Flavones, a significant subclass of flavonoids, have shown pharmacological impacts in various diseases including IBD, through the NRF2 signaling pathway. In this study, we conducted a screening of compounds with a flavone structure and identified NJK15003 as a promising NRF2 activator. NJK15003 demonstrated potent NRF2 activation, as evidenced by the upregulation of downstream proteins, promoter activation, and NRF2 nuclear translocation in IBD cellular models. Treatment with NJK15003 effectively restored the protein levels of tight junctions in cells treated with dextran sodium sulfate (DSS) and in DSS-treated mice, suggesting its potential to protect cells from barrier integrity disruption in IBD. In DSS-treated mice, the administration of NJK15003 resulted in the prevention of body weight loss, a reduction in colon length shortening, and a decrease in the disease activity index. Furthermore, NJK15003 treatment substantially alleviated inflammatory responses and apoptotic cell death in the colon of DSS-treated mice. Taken together, this study proposes the potential utility of NRF2-activating flavone compounds, exemplified by NJK15003, for the treatment of IBD.


Assuntos
Colite , Flavonas , Doenças Inflamatórias Intestinais , Sulfatos , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Dextranos/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Flavonas/farmacologia , Flavonas/uso terapêutico , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/metabolismo
7.
Bioorg Med Chem ; 100: 117588, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295487

RESUMO

Microsatellite instability (MSI) is a hypermutable condition caused by DNA mismatch repair system defects, contributing to the development of various cancer types. Recent research has identified Werner syndrome ATP-dependent helicase (WRN) as a promising synthetic lethal target for MSI cancers. Herein, we report the first discovery of thiophen-2-ylmethylene bis-dimedone derivatives as novel WRN inhibitors for MSI cancer therapy. Initial computational analysis and biological evaluation identified a new scaffold for a WRN inhibitor. Subsequent SAR study led to the discovery of a highly potent WRN inhibitor. Furthermore, we demonstrated that the optimal compound induced DNA damage and apoptotic cell death in MSI cancer cells by inhibiting WRN. This study provides a new pharmacophore for WRN inhibitors, emphasizing their therapeutic potential for MSI cancers.


Assuntos
Instabilidade de Microssatélites , Neoplasias , Tiofenos , Humanos , Cicloexanonas , Neoplasias/tratamento farmacológico , Neoplasias/genética , Helicase da Síndrome de Werner/antagonistas & inibidores , Helicase da Síndrome de Werner/metabolismo , Tiofenos/química , Tiofenos/farmacologia
8.
Front Bioeng Biotechnol ; 11: 1303004, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38047290

RESUMO

The necessity of reliable measurement data assessment in the realm of human life has experienced exponential growth due to its extensive utilization in health monitoring, rehabilitation, surgery, and long-term treatment. As a result, the significance of kinematic biosensors has substantially increased across various domains, including wearable devices, human-machine interaction, and bioengineering. Traditionally, the fabrication of skin-mounted biosensors involved complex and costly processes such as lithography and deposition, which required extensive preparation. However, the advent of additive manufacturing has revolutionized biosensor production by facilitating customized manufacturing, expedited processes, and streamlined fabrication. AM technology enables the development of highly sensitive biosensors capable of measuring a wide range of kinematic signals while maintaining a low-cost aspect. This paper provides a comprehensive overview of state-of-the-art noninvasive kinematic biosensors created using diverse AM technologies. The detailed development process and the specifics of different types of kinematic biosensors are also discussed. Unlike previous review articles that primarily focused on the applications of additively manufactured sensors based on their sensing data, this article adopts a unique approach by categorizing and describing their applications according to their sensing frequencies. Although AM technology has opened new possibilities for biosensor fabrication, the field still faces several challenges that need to be addressed. Consequently, this paper also outlines these challenges and provides an overview of future applications in the field. This review article offers researchers in academia and industry a comprehensive overview of the innovative opportunities presented by kinematic biosensors fabricated through additive manufacturing technologies.

9.
J Med Chem ; 66(22): 15141-15170, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37963811

RESUMO

A lack of the T cell-inflamed tumor microenvironment limits the efficacy of immune checkpoint inhibitors (ICIs). Activation of stimulator of interferon genes (STING)-mediated innate immunity has emerged as a novel therapeutic approach in cancer therapy. 2',3'-Cyclic GMP-AMP (cGAMP) is a natural STING agonist; however, cGAMP is subjected to endogenous degradation by ecto-nucleotide pyrophosphatase phosphodiesterase 1 (ENPP1). To improve the ICI response rate, we developed 29f, a novel ENPP1 inhibitor with phthalazin-1(2H)-one as the core scaffold. 29f inhibited the cGAMP hydrolysis by ENPP1 in vitro (IC50 = 68 nM) and enhanced the STING-mediated type I interferon response in both immune and tumor cells. 29f demonstrated excellent metabolic stability and bioavailability (F = 65%). Orally administered 29f promoted tumor growth inhibition in a CT26 syngeneic model and increased the anti-PD-L1 response. Furthermore, 29f-induced immunological memory prevented the tumor relapse against tumor rechallenge, suggesting the promising therapeutic potential of 29f.


Assuntos
Neoplasias , Diester Fosfórico Hidrolases , Humanos , Diester Fosfórico Hidrolases/metabolismo , Neoplasias/terapia , Pirofosfatases , Imunoterapia , Microambiente Tumoral
10.
Adv Sci (Weinh) ; 10(15): e2206186, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36995044

RESUMO

Fiber-based implantable electronics are one of promising candidates for in vivo biomedical applications thanks to their unique structural advantages. However, development of fiber-based implantable electronic devices with biodegradable capability remains a challenge due to the lack of biodegradable fiber electrodes with high electrical and mechanical properties. Here, a biocompatible and biodegradable fiber electrode which simultaneously exhibits high electrical conductivity and mechanical robustness is presented. The fiber electrode is fabricated through a facile approach that incorporates a large amount of Mo microparticles into outermost volume of a biodegradable polycaprolactone (PCL) fiber scaffold in a concentrated manner. The biodegradable fiber electrode simultaneously exhibits a remarkable electrical performance (≈43.5 Ω cm-1 ), mechanical robustness, bending stability, and durability for more than 4000 bending cycles based on the Mo/PCL conductive layer and intact PCL core in the fiber electrode. The electrical behavior of the biodegradable fiber electrode under the bending deformation is analyzed by an analytical prediction and a numerical simulation. In addition, the biocompatible properties and degradation behavior of the fiber electrode are systematically investigated. The potential of biodegradable fiber electrode is demonstrated in various applications such as an interconnect, a suturable temperature sensor, and an in vivo electrical stimulator.

11.
ACS Cent Sci ; 9(3): 417-426, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36968534

RESUMO

Targeted protein degradation (TPD) provides unique advantages over gene knockdown in that it can induce selective degradation of disease-associated proteins attributed to pathological mutations or aberrant post-translational modifications (PTMs). Herein, we report a protein degrader, PRZ-18002, that selectively binds to an active form of p38 MAPK. PRZ-18002 induces degradation of phosphorylated p38 MAPK (p-p38) and a phosphomimetic mutant of p38 MAPK in a proteasome-dependent manner. Given that the activation of p38 MAPK plays pivotal roles in the pathophysiology of Alzheimer's disease (AD), selective degradation of p-p38 may provide an attractive therapeutic option for the treatment of AD. In the 5xFAD transgenic mice model of AD, intranasal treatment of PRZ-18002 reduces p-p38 levels and alleviates microglia activation and amyloid beta (Aß) deposition, leading to subsequent improvement of spatial learning and memory. Collectively, our findings suggest that PRZ-18002 ameliorates AD pathophysiology via selective degradation of p-p38, highlighting a novel therapeutic TPD modality that targets a specific PTM to induce selective degradation of neurodegenerative disease-associated protein.

12.
Phytomedicine ; 109: 154553, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610153

RESUMO

BACKGROUND: We previously reported the potential inhibitory activity of 3',4'-dihydroxyflavone (DHF) on nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-stimulated macrophages. PURPOSE: We investigated the underlying molecular mechanisms of DHF in LPS-activated macrophages and evaluated its effect on LPS-induced septic shock in mice. METHODS: To explore the anti-inflammatory effect of DHF, nitrite, PGE2, and cytokines were measured in vitro and in vivo experiments. In addition, to verify the molecular signaling pathway, quantitative real time-PCR, luciferase assay, nuclear extraction, electrophoretic mobility shift assay, immunocytochemistry, immunoprecipitation, molecular docking analysis, and myeloid differentiation 2 (MD2)-LPS binding assay were conducted. RESULTS: DHF suppressed the LPS-induced expression of proinflammatory mediators through nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and interferon regulatory factor 3 (IRF3) inactivation pathways in RAW 264.7 macrophages. Importantly, molecular docking analysis and in vitro binding assays showed that DHF interacts with the hydrophobic pocket of MD2 and then interferes with the interaction between LPS and toll-like receptor 4 (TLR4). DHF inhibited LPS-induced oxidative stress by upregulating nuclear factor erythroid 2-related factor 2 (Nrf2). Treatment of LPS-induced endotoxemia mice with DHF reduced the expression levels of pro-inflammatory mediators via the inactivation of NF-κB, AP-1, and signal transducer and activator of transcription 1 (STAT1) in the lung tissue, thus increasing the survival rate. CONCLUSION: Taken together, our data first time revealed the underlying mechanism of the DHF-dependent anti-inflammatory effect by preventing LPS from binding to the TLR4/MD2 complex. Therefore, DHF may be a possible anti-inflammatory agent for the treatment of LPS-mediated inflammatory diseases.


Assuntos
Lipopolissacarídeos , NF-kappa B , Animais , Camundongos , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição AP-1/metabolismo , Simulação de Acoplamento Molecular , Anti-Inflamatórios/farmacologia
13.
Biomol Ther (Seoul) ; 31(2): 183-192, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36171179

RESUMO

p38 MAPK has been implicated in the pathogenesis of asthma as well as pro-allergic Th2 cytokines, orosomucoid-like protein isoform 3 (ORMDL3), regulation of sphingolipid biosynthesis, and regulatory T cell-derived IL-35. To elucidate the role of p38 MAPK in the pathogenesis of asthma, we examined the effect of NJK14047, an inhibitor of p38 MAPK, against ovalbumin (OVA)-induced allergic asthma; we administrated NJK14047 before OVA sensitization or challenge in BALB/c mice. As ORMDL3 regulation of sphingolipid biosynthesis has been implicated in childhood asthma, ORMDL3 expression and sphingolipids contents were also analyzed. NJK14047 inhibited antigen-induced degranulation of RBL-2H3 mast cells. NJK14047 administration both before OVA sensitization and challenge strongly inhibited the increase in eosinophil and lymphocyte counts in the bronchoalveolar lavage fluid. In addition, NJK14047 administration inhibited the increase in the levels of Th2 cytokines. Moreover, NJK14047 reduced the inflammatory score and the number of periodic acid-Schiff-stained cells in the lungs. Further, OVA-induced increase in the levels of C16:0 and C24:1 ceramides was not altered by NJK14047. These results suggest that p38 MAPK plays crucial roles in activation of dendritic and mast cells during sensitization and challenge periods, but not in ORMDL3 and sphingolipid biosynthesis.

14.
Org Lett ; 24(50): 9216-9221, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36512443

RESUMO

In this study, an unprecedented approach to the xanthone scaffold from cyclohexyl(2-hydroxyphenyl)methanone via dehydrogenative cyclization and a successive aromatization cascade is reported. This methodology affords a novel route to the privileged structure with a wide substrate scope (a total of 29 compounds, ≤96% yield) in a highly atom-economic manner.


Assuntos
Cobre , Xantonas , Ciclização , Cobre/química , Catálise , Xantonas/química , Estrutura Molecular
15.
Sci Rep ; 12(1): 19897, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400819

RESUMO

The use of cellular structures has led to unprecedented outcomes in various fields involving optical and mechanical cloaking, negative thermal expansion, and a negative Poisson's ratio. The unique characteristics of periodic cellular structures primarily originate from the interconnectivity, periodicity, and unique design of the unit cells. However, the periodicity often induces unfavorable mechanical behaviors such as a "post-yielding collapse", and the mechanical performance is often limited by the design of the unit cells. Therefore, we propose a novel structure called a meta grain structure (MGS), which is inspired by a polycrystalline structure, to enhance flexibility in design and mechanical reliability. A total of 138 different MGSs were built and tested numerically, and the correlations between the design parameters (e.g., the relative density) and mechanical properties of the MGSs were rigorously analyzed. A systematic design methodology was developed to obtain the optimal design of the MGS with the target Young's modulus. This methodology makes it possible to build a unique structure that offers various design options and overcomes the current limitations of cellular structures. Furthermore, a systematic inverse design methodology makes it possible to produce an MGS that satisfies the required mechanical performance.


Assuntos
Materiais Biocompatíveis , Porosidade , Materiais Biocompatíveis/química , Reprodutibilidade dos Testes , Módulo de Elasticidade
16.
Phys Chem Chem Phys ; 24(44): 27031-27037, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36189494

RESUMO

In this study, 45 and 249 critical features were discovered among 896 zeolite descriptors generated by the matminer package for estimating the shear and bulk moduli of zeolites, respectively. A database containing the mechanical properties of 873 zeolite structures, calculated using density functional theory, was used to train the machine learning regression model. The results of using these critical features with the LightGBM algorithm were rigorously compared with those from other regressors as well as with different sets of features. The comparison results indicate that the surrogate model with critical features increases the prediction accuracy of the bulk and shear moduli of zeolites by 17.3% and 10.6%, respectively, and reduces the prediction uncertainty by one-third of that achieved using previously available features. The suggested features originating from several physical and chemical groups highlight the unveiled relationships between the features and mechanical properties of zeolites. The robustness of the constructed model with 356 features was confirmed by applying a set of different training-test set ratios. We believe that the suggested critical features of zeolites can help to understand the mechanical behavior of a half million unlabeled hypothetical zeolite structures and accelerate the discovery of novel zeolites with unprecedented mechanical properties.

17.
J Enzyme Inhib Med Chem ; 37(1): 2434-2451, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36069240

RESUMO

In an effort to discover novel scaffolds of non-nucleotide-derived Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) inhibitors to stimulate the Stimulator of Interferon Genes (STING) pathway, we designed and synthesised pyrrolopyrimidine and pyrrolopyridine derivatives and performed structure-activity relationship (SAR) study. We found 18p possessed high potency (IC50 = 25.0 nM) against ENPP1, and activated STING pathway in a concentration dependent manner. Also, in response to STING pathway activation, cytokines such as IFN-ß and IP-10 were induced by 18p in a concentration dependent manner. Finally, we discovered that 18p causes inhibition of tumour growth in 4T1 syngeneic mouse model. This study provides new insight into the designing of novel ENPP1 inhibitors and warrants further development of small molecule immune modulators for cancer immunotherapy.


Assuntos
Diester Fosfórico Hidrolases , Pirofosfatases , Animais , Camundongos , Diester Fosfórico Hidrolases/metabolismo , Pirimidinas , Pirofosfatases/genética , Pirofosfatases/metabolismo , Pirróis/farmacologia , Relação Estrutura-Atividade
18.
Biomol Ther (Seoul) ; 30(6): 501-509, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35788499

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disorder. Suppression of MAPKs and NF-κB is implicated as a vital mechanism of action of several traditional Chinese medicines for AD therapy. Although overexpression of MAPK mRNA in the skin tissue has been shown in the AD model, the roles of each MAPK in AD pathogenesis have rarely been studied. This study examined the effect of NJK14047, an inhibitor of p38 MAPKs, on AD-like skin lesions induced in BALB/c mice by sensitization and challenges with 1-chloro-2,4-dinitrobenzene (CDNB) on dorsal skin and ears, respectively. After induction of AD, NJK14047 (2.5 mg/kg) or dexamethasone (10 mg/kg) was administrated for 3 weeks via intraperitoneal injection. Following its administration, NJK14047 suppressed CDNB-induced AD-like symptoms such as skin hypertrophy and suppressed mast cell infiltration into the skin lesions. It also reduced CDNB-induced increase in TH2 cytokine (IL-13) and TH1 cytokines (interferon-γ and IL-12A) levels but did not decrease serum IgE level. Furthermore, NJK14047 blocked CDNB-induced lymph node enlargement. These results suggest that NJK14047, a p38 MAPK inhibitor, might be an optimal therapeutic option with unique modes of action for AD treatment.

19.
Biomed Pharmacother ; 148: 112763, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35240526

RESUMO

Alzheimer's disease (AD) is caused by various pathological mechanisms; therefore, it is necessary to develop drugs that simultaneously act on multiple targets. In this study, we investigated the effects of eugenitol, which has anti-amyloid ß (Aß) and anti-neuroinflammatory effects, in an AD mouse model. We found that eugenitol potently inhibited Aß plaque and oligomer formation. Moreover, eugenitol dissociated the preformed Aß plaques and reduced Aß-induced nero2a cell death. An in silico docking simulation study showed that eugenitol may interact with Aß1-42 monomers and fibrils. Eugenitol showed radical scavenging effects and potently reduced the release of proinflammatory cytokines from lipopolysaccharide-treated BV2 cells. Systemic administration of eugenitol blocked Aß aggregate-induced memory impairment in the Morris water maze test in a dose-dependent manner. In 5XFAD mice, prolonged administration of eugenitol ameliorated memory and hippocampal long-term potentiation impairment. Moreover, eugenitol significantly reduced Aß deposits and neuroinflammation in the hippocampus of 5XFAD mice. These results suggest that eugenitol, which has anti-Aß aggregation, Aß fibril dissociation, and anti-inflammatory effects, potently modulates AD-like pathologies in 5XFAD mice, and could be a promising candidate for AD therapy.


Assuntos
Peptídeos beta-Amiloides , Transtornos da Memória , Doenças Neuroinflamatórias , Animais , Masculino , Camundongos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Sequestradores de Radicais Livres/metabolismo , Hipocampo/efeitos dos fármacos , Transtornos da Memória/patologia , Doenças Neuroinflamatórias/patologia , Espécies Reativas de Oxigênio/metabolismo
20.
J Med Chem ; 65(7): 5407-5432, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35315650

RESUMO

Stimulator of interferon genes (STING) is an endoplasmic reticulum-membrane protein that plays important roles in cancer immunotherapy by activating innate immune responses. We designed and synthesized STING modulators and characterized compounds 4a and 4c that share a crucial amidobenzimidazole moiety. In vitro STING binding and cell-based activity assays demonstrated the potency and efficacy of the compounds that function as direct STING agonists by stimulating STING downstream signaling and promoting type I interferon immune responses. In vitro metabolic studies and the pharmacokinetic properties of the compounds led us to investigate their anticancer activity in an in vivo syngeneic model. Intravenous injection of compounds 4a and 4c significantly decreased tumor volume in a CT26 murine colorectal carcinoma model, and the immunological memory-derived cancer inhibition was observed in 4c-treated mouse models. The present results suggest the therapeutic potential of the compounds for cancer immunotherapy via STING-mediated immune activation.


Assuntos
Neoplasias , Receptores de Interferon , Animais , Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos , Interferons , Proteínas de Membrana/metabolismo , Camundongos , Neoplasias/tratamento farmacológico , Receptores de Interferon/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...