Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38765991

RESUMO

Lipids are essential for tumours because of their structural, energetic, and signaling roles. While many cancer cells upregulate lipid synthesis, growing evidence suggests that tumours simultaneously intensify the uptake of circulating lipids carried by lipoproteins. Which mechanisms promote the uptake of extracellular lipids, and how this pool of lipids contributes to cancer progression, are poorly understood. Here, using functional genetic screens, we find that lipoprotein uptake confers resistance to lipid peroxidation and ferroptotic cell death. Lipoprotein supplementation robustly inhibits ferroptosis across numerous cancer types. Mechanistically, cancer cells take up lipoproteins through a pathway dependent on sulfated glycosaminoglycans (GAGs) linked to cell-surface proteoglycans. Tumour GAGs are a major determinant of the uptake of both low and high density lipoproteins. Impairment of glycosaminoglycan synthesis or acute degradation of surface GAGs decreases the uptake of lipoproteins, sensitizes cells to ferroptosis and reduces tumour growth in mice. We also find that human clear cell renal cell carcinomas, a distinctively lipid-rich tumour type, display elevated levels of lipoprotein-derived antioxidants and the GAG chondroitin sulfate than non-malignant human kidney. Altogether, our work identifies lipoprotein uptake as an essential anti-ferroptotic mechanism for cancer cells to overcome lipid oxidative stress in vivo, and reveals GAG biosynthesis as an unexpected mediator of this process.

2.
J Mass Spectrom Adv Clin Lab ; 32: 60-67, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38708432

RESUMO

Introduction: Chromatographic methods for analysis of propofol and its metabolites have been widely used in pharmacokinetic studies of propofol distribution, metabolism, and clearance. Application of chromatographic methods is also needed in clinical and forensic laboratories for detecting and monitoring propofol misuse. Objective: We report a method for sensitive analysis of propofol, propofol 1-glucuronide (PG), 4-hydroxypropofol 1-glucuronide (1-QG), 4-hydroxypropofol 4-glucuronide (4-QG) and 4-hydroxypropofol 4-sulfate (4-QS) in urine by LC-MS/MS analysis. The method employs a simple dilute-and-analyze sample preparation with stable isotope internal standardization. Results: Validation studies demonstrate a linear calibration model (100-10,000 ng/mL), with dilution integrity verified for the extended range of concentrations experienced in propofol use. Criteria-based validation was achieved, including an average coefficient of variation of 6.5 % and a percent bias of -4.2 ng/mL. The method was evaluated in 12 surgical patients, with monitoring periods lasting up to 30 days following intravenous propofol administrations of 100-3000 mg on the day of surgery. While the concentration ratio of PG to 4-hydroxy propofol metabolite decreased significantly in the days following surgery, PG maintained the highest concentration in all specimens. Both PG and 1-QG were detectable throughout the monitoring periods, including in a patient monitored for 30 days. Lower concentrations were determined for 4-QG and 4-QS, with evidence of detection up to 20 days. Propofol was not detectable in any urine specimens, thereby proving ineffective for identifying drug use. Conclusion: The validated method for quantifying propofol metabolites demonstrates its applicability for the sensitive detection of propofol misuse over a long window of drug-use detection.

3.
Soft Matter ; 19(33): 6414-6422, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37581239

RESUMO

A series of liquid crystalline porphyrins was synthesized, purified, and characterized. Differential scanning calorimetry (DSC) and hot-stage polarized optical microscopy (HS-POM) revealed that the porphyrins in the series with shorter alkyl arm lengths exhibit kinetic cold crystallization, wherein the molecules spontaneously organize into large, disc-like structures that remain stable upon cooling. Using DSC, the kinetic and thermodynamic parameters related to these materials were determined. Analysis of non-isothermal crystallization revealed the presence of multiple nucleation and growth processes related to cold crystallization.

4.
NMR Biomed ; 36(10): e4989, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37336778

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths. Imaging plays a crucial role in the early detection of HCC, although current methods are limited in their ability to characterize liver lesions. Most recently, deuterium metabolic imaging (DMI) has been demonstrated as a powerful technique for the imaging of metabolism in vivo. Here, we assess the metabolic flux of [6,6'-2 H2 ] fructose in cell cultures and in subcutaneous mouse models at 9.4 T. We compare these rates with the most widely used DMI probe, [6,6'-2 H2 ] glucose, exploring the possibility of developing 2 H fructose to overcome the limitations of glucose as a novel DMI probe for detecting liver tumors. Comparison of the in vitro metabolic rates implies their similar glycolytic metabolism in the TCA cycle due to comparable production rates of 2 H glutamate/glutamine (glx) for the two precursors, but overall higher glycolytic metabolism from 2 H glucose because of a higher production rate of 2 H lactate. In vivo kinetic studies suggest that HDO can serve as a robust reporter for the consumption of the precursors in liver tumors. As fructose is predominantly metabolized in the liver, deuterated water (HDO) produced from 2 H fructose is probably less contaminated from whole-body metabolism in comparison with glucose. Moreover, in studies of the normal liver, 2 H fructose is readily converted to 2 H glx, enabling the characterization of 2 H fructose kinetics. This overcomes a major limitation of previous 2 H glucose studies in the liver, which were unable to confidently discern metabolic flux due to overlapped signals of 2 H glucose and its metabolic product, 2 H glycogen. This suggests a unique role for 2 H fructose metabolism in HCC and the normal liver, making it a useful approach for assessing liver-related diseases and the progression to oncogenesis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/metabolismo , Deutério/metabolismo , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/metabolismo , Cinética , Frutose/metabolismo , Glucose/metabolismo , Fígado/diagnóstico por imagem , Fígado/metabolismo , Ácido Láctico/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(19): e2120595119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35512101

RESUMO

Glutamine is consumed by rapidly proliferating cells and can provide the carbon and nitrogen required for growth through various metabolic pathways. However, delineating the metabolic fate of glutamine is challenging to interrogate in vivo. Hyperpolarized magnetic resonance, by providing high transient nuclear magnetic resonance signals, provides an approach to measure fast biochemical processes in vivo. Aminohydrolysis of glutamine at carbon-5 plays an important role in providing nitrogen and carbon for multiple pathways. Here, we provide a synthetic strategy for isotope-enriched forms of glutamine that prolongs glutamine-C5 relaxation times and thereby reveals in vivo reactions involving carbon-5. We investigate multiple enrichment states, finding [5-13C,4,4-2H2,5-15N]-L-glutamine to be optimal for hyperpolarized measurement of glutamine conversion to glutamate in vivo. Leveraging this compound, we explore pancreatic cancer glutamine metabolism in vivo. Taken together, this work provides a means for studying glutamine metabolic flux in vivo and demonstrates on-target effects of metabolic enzyme inhibitors.


Assuntos
Glutaminase , Glutamina , Biomarcadores/metabolismo , Ciclo do Ácido Cítrico , Glutaminase/metabolismo , Glutamina/metabolismo , Humanos , Metabolômica
6.
Sci Adv ; 8(14): eabm7985, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35385296

RESUMO

The ability to break down fructose is dependent on ketohexokinase (KHK) that phosphorylates fructose to fructose-1-phosphate (F1P). We show that KHK expression is tightly controlled and limited to a small number of organs and is down-regulated in liver and intestinal cancer cells. Loss of fructose metabolism is also apparent in hepatocellular adenoma and carcinoma (HCC) patient samples. KHK overexpression in liver cancer cells results in decreased fructose flux through glycolysis. We then developed a strategy to detect this metabolic switch in vivo using hyperpolarized magnetic resonance spectroscopy. Uniformly deuterating [2-13C]-fructose and dissolving in D2O increased its spin-lattice relaxation time (T1) fivefold, enabling detection of F1P and its loss in models of HCC. In summary, we posit that in the liver, fructolysis to F1P is lost in the development of cancer and can be used as a biomarker of tissue function in the clinic using metabolic imaging.

7.
Arthroplast Today ; 14: 140-147, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35308050

RESUMO

Background: Patellar resurfacing is routinely performed during total knee arthroplasty to reduce pain associated with patellofemoral osteoarthritis. With 3-dimensional ingrowth materials readily available, the present study aimed to evaluate if cemented polyethylene (CP) patellar buttons conferred higher ultimate load to failure than press-fit metal-backed (PF) buttons in axial compression. Material and methods: Ten matched cadaveric and 20 composite patellae were resurfaced and implanted with either a PF or CP button. Biomechanical testing using an MTS machine was performed to measure the force required to generate a periprosthetic patella fracture. Mean load to failure and load to failure per 1-mm patellar thickness were compared with a paired and independent samples Students' t-test for the cadaveric and composite patellae, respectively. Results: The average load to failure for the matched cadaveric patellae with PF implants was significantly lower than that for patellae with CP buttons (4082.05 N vs 5898.37 N, P = .045). The average load to failure for composite patella with PF implants was significantly higher than that for composite patellae with CP implants (6004.09 N vs 4551.40 N, P = .001). The mean load to failure per 1-mm patellar thickness was also significantly higher for composite patellae with PF implants (263.80 N/mm vs 200.37 N/mm, P = .001). Conclusion: Cadaveric patellae with cemented implants had a significantly higher ultimate load to failure in axial compression than press-fit patella. However, this result was reversed in the composite model. Exploration of biological and composite model properties could provide further insight into patellar implant selection during total knee arthroplasty.

8.
Magn Reson Med ; 85(2): 978-986, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32820566

RESUMO

PURPOSE: To generate dynamic, volumetric maps of hyperpolarized [1-13 C]pyruvate and its metabolic products in vivo. METHODS: Maps of chemical species were generated with iterative least squares (IDEAL) reconstruction from multiecho echo-planar imaging (EPI) of phantoms of thermally polarized 13 C-labeled chemicals and mice injected with hyperpolarized [1-13 C]pyruvate on a preclinical 3T scanner. The quality of the IDEAL decomposition of single-shot and multishot phantom images was evaluated using quantitative results from a simple pulse-and-acquire sequence as the gold standard. Time course and area-under-the-curve plots were created to analyze the distribution of metabolites in vivo. RESULTS: Improved separation of chemical species by IDEAL, evaluated by the amount of residual signal measured for chemicals not present in the phantoms, was observed as the number of EPI shots was increased from one to four. Dynamic three-dimensional metabolite maps of [1-13 C]pyruvate,[1-13 C]pyruvatehydrate, [1-13 C]lactate, [1-13 C]bicarbonate, and [1-13 C]alanine generated by IDEAL from interleaved multishot multiecho EPI of live mice were used to construct time course and area-under-the-curve graphs for the heart, kidneys, and liver, which showed good agreement with previously published results. CONCLUSIONS: IDEAL decomposition of multishot multiecho 13C EPI images is a simple, yet robust method for generating high-quality dynamic volumetric maps of hyperpolarized [1-13 C]pyruvate and its products in vivo and has potential applications for the assessment of multiorgan metabolic phenomena.


Assuntos
Imagem Ecoplanar , Ácido Pirúvico , Animais , Isótopos de Carbono , Ácido Láctico , Análise dos Mínimos Quadrados , Imageamento por Ressonância Magnética , Camundongos , Imagens de Fantasmas
9.
Acc Chem Res ; 50(4): 1088-1095, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28345881

RESUMO

This Account provides an overview of our recent efforts to uncover the fundamental charge transport properties of Si-Si and Ge-Ge single bonds and introduce useful functions into group 14 molecular wires. We utilize the tools of chemical synthesis and a scanning tunneling microscopy-based break-junction technique to study the mechanism of charge transport in these molecular systems. We evaluated the fundamental ability of silicon, germanium, and carbon molecular wires to transport charge by comparing conductances within families of well-defined structures, the members of which differ only in the number of Si (or Ge or C) atoms in the wire. For each family, this procedure yielded a length-dependent conductance decay parameter, ß. Comparison of the different ß values demonstrates that Si-Si and Ge-Ge σ bonds are more conductive than the analogous C-C σ bonds. These molecular trends mirror what is seen in the bulk. The conductance decay of Si and Ge-based wires is similar in magnitude to those from π-based molecular wires such as paraphenylenes However, the chemistry of the linkers that attach the molecular wires to the electrodes has a large influence on the resulting ß value. For example, Si- and Ge-based wires of many different lengths connected with a methyl-thiomethyl linker give ß values of 0.36-0.39 Å-1, whereas Si- and Ge-based wires connected with aryl-thiomethyl groups give drastically different ß values for short and long wires. This observation inspired us to study molecular wires that are composed of both π- and σ-orbitals. The sequence and composition of group 14 atoms in the σ chain modulates the electronic coupling between the π end-groups and dictates the molecular conductance. The conductance behavior originates from the coupling between the subunits, which can be understood by considering periodic trends such as bond length, polarizability, and bond polarity. We found that the same periodic trends determine the electric field-induced breakdown properties of individual Si-Si, Ge-Ge, Si-O, Si-C, and C-C bonds. Building from these studies, we have prepared a system that has two different, alternative conductance pathways. In this wire, we can intentionally break a labile, strained silicon-silicon bond and thereby shunt the current through the secondary conduction pathway. This type of in situ bond-rupture provides a new tool to study single molecule reactions that are induced by electric fields. Moreover, these studies provide guidance for designing dielectric materials as well as molecular devices that require stability under high voltage bias. The fundamental studies on the structure/function relationships of the molecular wires have guided the design of new functional systems based on the Si- and Ge-based wires. For example, we exploited the principle of strain-induced Lewis acidity from reaction chemistry to design a single molecule switch that can be controllably switched between two conductive states by varying the distance between the tip and substrate electrodes. We found that the strain intrinsic to the disilaacenaphthene scaffold also creates two state conductance switching. Finally, we demonstrate the first example of a stereoelectronic conductance switch, and we demonstrate that the switching relies crucially on the electronic delocalization in Si-Si and Ge-Ge wire backbones. These studies illustrate the untapped potential in using Si- and Ge-based wires to design and control charge transport at the nanoscale and to allow quantum mechanics to be used as a tool to design ultraminiaturized switches.

10.
J Glaucoma ; 26(4): 390-395, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28169917

RESUMO

Transforming growth factor-ß (TGF-ß) may play a role in the pathogenesis of primary open-angle glaucoma (POAG). Elevated levels of TGF-ß are found in the aqueous humor and in reactive optic nerve astrocytes in patients with glaucoma. In POAG, aqueous humor outflow resistance at the trabecular meshwork (TM) leads to increased intraocular pressure and retinal ganglion cell death. It is hypothesized that TGF-ß increases outflow resistance by altering extracellular matrix homeostasis and cell contractility in the TM through interactions with other proteins and signaling molecules. TGF-ß may also be involved in damage to the optic nerve head. Current available therapies for POAG focus exclusively on lowering intraocular pressure without addressing extracellular matrix homeostasis processes in the TM. The purpose of this review is to discuss possible therapeutic strategies targeting TGF-ß in the treatment of POAG. Herein, we describe the current understanding of the role of TGF-ß in POAG pathophysiology, and examine ways TGF-ß may be targeted at the levels of production, activation, downstream signaling, and homeostatic regulation.


Assuntos
Anti-Hipertensivos/uso terapêutico , Glaucoma de Ângulo Aberto/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Fator de Crescimento Transformador beta/antagonistas & inibidores , Anti-Hipertensivos/farmacologia , Humor Aquoso/metabolismo , Astrócitos/metabolismo , Ensaios Clínicos como Assunto , Matriz Extracelular/metabolismo , Glaucoma de Ângulo Aberto/fisiopatologia , Humanos , Pressão Intraocular/efeitos dos fármacos , Pressão Intraocular/fisiologia , Disco Óptico/metabolismo , Transdução de Sinais/fisiologia , Malha Trabecular/fisiologia , Fator de Crescimento Transformador beta/fisiologia
11.
J Am Chem Soc ; 138(49): 16159-16164, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960303

RESUMO

The stability of chemical bonds can be studied experimentally by rupturing single molecule junctions under applied voltage. Here, we compare voltage-induced bond rupture in two Si-Si backbones: one has no alternate conductive pathway whereas the other contains an additional naphthyl pathway in parallel to the Si-Si bond. We show that in contrast to the first system, the second can conduct through the naphthyl group when the Si-Si bond is ruptured using an applied voltage. We investigate this voltage induced Si-Si bond rupture by ab initio density functional theory calculations and molecular dynamics simulations that ultimately demonstrate that the excitation of molecular vibrational modes by tunneling electrons leads to homolytic Si-Si bond rupture.

12.
J Am Chem Soc ; 138(36): 11505-8, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27563932

RESUMO

A highly conducting electronic contact between a strained disilane and Au is demonstrated through scanning tunneling microscope-based single-molecule measurements. Conformationally locked cis diastereomers of bis(sulfide)-anchor-equipped 1,2-disilaacenaphthenes readily form high-conducting junctions in which the two sulfide anchors bind in a bipodal fashion to one gold electrode, providing enough stability for a stable electrical contact between the Si-Si σ bond and the other electrode.

13.
J Vis Exp ; (97): 52556, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25867017

RESUMO

Toxoplasma gondii, the causative agent of toxoplasmosis, is an obligate intracellular protozoan pathogen. The parasite invades and replicates within virtually any warm blooded vertebrate cell type. During parasite invasion of a host cell, the parasite creates a parasitophorous vacuole (PV) that originates from the host cell membrane independent of phagocytosis within which the parasite replicates. While IFN-dependent-innate and cell mediated immunity is important for eventual control of infection, innate immune cells, including neutrophils, monocytes and dendritic cells, can also serve as vehicles for systemic dissemination of the parasite early in infection. An approach is described that utilizes the host innate immune response, in this case macrophages, in a forward genetic screen to identify parasite mutants with a fitness defect in infected macrophages following activation but normal invasion and replication in naïve macrophages. Thus, the screen isolates parasite mutants that have a specific defect in their ability to resist the effects of macrophage activation. The paper describes two broad phenotypes of mutant parasites following activation of infected macrophages: parasite stasis versus parasite degradation, often in amorphous vacuoles. The parasite mutants are then analyzed to identify the responsible parasite genes specifically important for resistance to induced mediators of cell autonomous immunity. The paper presents a general approach for the forward genetics screen that, in theory, can be modified to target parasite genes important for resistance to specific antimicrobial mediators. It also describes an approach to evaluate the specific macrophage antimicrobial mediators to which the parasite mutant is susceptible. Activation of infected macrophages can also promote parasite differentiation from the tachyzoite to bradyzoite stage that maintains chronic infection. Therefore, methodology is presented to evaluate the importance of the identified parasite gene to establishment of chronic infection.


Assuntos
Interferon gama/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Toxoplasma/genética , Animais , Resistência à Doença/imunologia , Fibroblastos/imunologia , Fibroblastos/parasitologia , Interações Hospedeiro-Parasita/imunologia , Humanos , Imunidade Inata/imunologia , Interferon gama/farmacologia , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Camundongos , Monócitos/imunologia , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/imunologia , Toxoplasmose/imunologia , Toxoplasmose/parasitologia , Vacúolos/parasitologia
14.
Br J Ophthalmol ; 99(5): 609-12, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25467967

RESUMO

BACKGROUND/AIMS: Evidence suggests that vascular abnormalities play a role in the pathogenesis of open-angle glaucoma (OAG) in some patients. This study aims to assess changes in retrobulbar and retinal blood flow over time in patients with glaucoma and examine their relationship to glaucomatous progression, as determined by retinal and optic nerve structure. METHODS: In this observational study, 103 patients with OAG were examined at baseline and 18 months follow-up. Retrobulbar blood flow was measured by colour Doppler imaging in the ophthalmic, central retinal and temporal posterior ciliary artery (TPCA) and nasal short posterior ciliary artery. Retinal capillary blood flow was measured by confocal scanning laser Doppler. Peripapillary retinal nerve fibre layer thickness was assessed by optical coherence tomography. Non-parametric Wilcoxon signed ranks tests were used to assess for any statistically significant changes between the baseline and 18-month visits for the retrobulbar and retinal flow, as well as the structural parameters. RESULTS: In general, retinal and retrobulbar blood flow parameters decreased over 18 months. Thinning of the optic disc rim and increase in cup area were associated with a higher resistance index (p=0.0334) and lower peak systolic velocity of TPCA (p=0.0282), respectively. A higher amount of retinal zero pixel blood flow correlated with a greater increase in cup/disc ratio (p=0.0170). CONCLUSIONS: Reductions in retrobulbar and retinal blood flow over time were associated with structural glaucomatous progression, as indicated by retinal and optic nerve changes.


Assuntos
Circulação Sanguínea/fisiologia , Glaucoma de Ângulo Aberto/fisiopatologia , Fibras Nervosas/patologia , Disco Óptico/patologia , Órbita/irrigação sanguínea , Células Ganglionares da Retina/patologia , Vasos Retinianos/fisiologia , Idoso , Idoso de 80 Anos ou mais , Velocidade do Fluxo Sanguíneo , Artérias Ciliares/fisiologia , Feminino , Glaucoma de Ângulo Aberto/diagnóstico , Humanos , Fluxometria por Laser-Doppler , Masculino , Artéria Retiniana/fisiologia , Tomografia de Coerência Óptica
15.
Front Behav Neurosci ; 8: 366, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25400560

RESUMO

We have recently shown that upregulation of glutamate transporter 1 (GLT1) in the brain is associated in part with reduction in ethanol intake in alcohol-preferring (P) male rats. In this study, we investigated the effects of a synthetic compound, (R)-(-)-5-methyl-1-nicotinoyl-2-pyrazoline (MS-153), known to activate GLT1 on ethanol consumption as well as GLT1 expression and certain signaling pathways in P rats. P rats were given 24-h concurrent access to 15 and 30% ethanol, water and food for 5 weeks. On week 6, P rats received MS-153 at a dose of 50 mg/kg (i.p.) or a vehicle (i.p.) for 5 consecutive days. We also tested the effect of MS-153 on daily sucrose (10%) intake. Our studies revealed a significant decrease in ethanol intake at the dose of 50 mg/kg MS-153 from Day 1 through 14. In addition, MS-153 at dose of 50 mg/kg did not induce any significant effect on sucrose intake. Importantly, we found that MS-153 upregulated the GLT1 level in the nucleus accumbens (NAc) but not in the prefrontal cortex (PFC). In accordance, we found upregulation of nuclear NFkB-65 level in NAc in MS-153-treated group, however, IkBα was downregulated in MS-153-treated group in NAc. We did not find any changes in NFkB-65 and IkBα levels in PFC. Interestingly, we revealed that p-Akt was downregulated in ethanol vehicle treated groups in the NAc; this downregulation was reversed by MS-153 treatment. We did not observe any significant differences in glutamate aspartate transporter (GLAST) expression among all groups. These findings reveal MS-153 as a GLT1 modulator that may have potential as a therapeutic drug for the treatment of alcohol dependence.

16.
Bioorg Med Chem ; 22(7): 2113-22, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24631358

RESUMO

The in vitro evaluation of thieno[3,2-d]pyrimidines identified halogenated compounds 1 and 2 with antiproliferative activity against three different cancer cell lines. A structure activity relationship study indicated the necessity of the chlorine at the C4-position for biological activity. The two most active compounds 1 and 2 were found to induce apoptosis in the leukemia L1210 cell line. Additionally, the compounds were screened against a variety of other microbial targets and as a result, selective activity against several fungi was also observed. The synthesis and preliminary biological results are reported herein.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Fungos/efeitos dos fármacos , Pirimidinas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
17.
Acta Ophthalmol ; 92(5): e336-40, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24460758

RESUMO

Glaucoma is the leading cause of blindness in individuals of African descent (AD). While open-angle glaucoma (OAG) disproportionately affects individuals of AD compared with persons of European descent (ED), the physiological mechanisms behind this disparity are largely unknown. The more rapid progression and greater severity of the disease in persons of AD further raise the concern for identifying these underlying differences in disease pathophysiology between AD and ED glaucoma patients. Ocular structural differences between AD and ED patients, including larger optic disc area, cup:disc ratio and thinner corneas, have been found. AD individuals are also disproportionately affected by systemic vascular diseases, including hypertension, cardiovascular disease, stroke and diabetes mellitus. Abnormal ocular blood flow has been implicated as a risk factor for glaucoma, and pilot research is beginning to identify localized ocular vascular differences between AD and ED OAG patients. Given the known systemic vascular deficits and the relationship between glaucoma and ocular blood flow, exploring these concepts in terms of glaucoma risk factors may have a significant impact in elucidating the mechanisms behind the disease disparity in the AD population.


Assuntos
População Negra/etnologia , Artérias Ciliares/fisiologia , Glaucoma de Ângulo Aberto/etnologia , Glaucoma de Ângulo Aberto/fisiopatologia , Artéria Oftálmica/fisiologia , Artéria Retiniana/fisiologia , População Branca/etnologia , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea/fisiologia , Doenças Cardiovasculares/etnologia , Doenças Cardiovasculares/fisiopatologia , Humanos , Pressão Intraocular/fisiologia , Fluxo Sanguíneo Regional
18.
Br J Ophthalmol ; 98(4): 427-31, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24246373

RESUMO

The purpose of this review is to discuss the evolution of nanotechnology and its potential diagnostic and therapeutic applications in the field of ophthalmology, particularly as it pertains to glaucoma. We reviewed literature using MEDLINE and PubMed databases with the following search terms: glaucoma, nanotechnology, nanomedicine, nanoparticles, ophthalmology and liposomes. We also reviewed pertinent references from articles found in this search. A brief history of nanotechnology and nanomedicine will be covered, followed by a discussion of the advantages and concerns of using this technology in the field of glaucoma. We will look at various studies concerning the development of nanomedicine, its potential applications in ocular drug delivery, diagnostic and imaging modalities and, surgical techniques. In particular, the challenges of assuring safety and efficacy of nanomedicine will be examined. We conclude that nanotechnology offers a novel approach to expanding diagnostic, imaging and surgical modalities in glaucoma and may contribute to the knowledge of disease pathogenesis at a molecular level. However, more research is needed to better elucidate the mechanism of cellular entry, the potential for nanoparticle cytotoxicity and the assurance of clinical efficacy.


Assuntos
Anti-Hipertensivos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Glaucoma/tratamento farmacológico , Nanomedicina/métodos , Nanopartículas/uso terapêutico , Nanotecnologia/métodos , Glaucoma/diagnóstico , Humanos , Lipossomos
19.
F1000Prime Rep ; 6: 102, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25580256

RESUMO

Open-angle glaucoma is a multifactorial optic neuropathy characterized by progressive loss of retinal ganglion cells and their axons. It is an irreversible disease with no established cure. The only currently approved treatment is aimed at lowering intraocular pressure, the most significant risk factor known to date. However, it is now clear that there are other risk factors involved in glaucoma's pathophysiology. To achieve future improvements in glaucoma management, new approaches to therapies and novel targets must be developed. Such therapies may include new tissue targets for lowering intraocular pressure, molecules influencing ocular hemodynamics, and treatments providing neuroprotection of retinal ganglion cells. Furthermore, novel drug delivery systems are in development that may improve patient compliance, increase bioavailability, and decrease adverse side effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...