Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Gastrointest Surg ; 16(3): 882-892, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38577094

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract, with tumor necrosis factor (TNF)-α playing a key role in its pathogenesis. Etanercept, a decoy receptor for TNF, is used to treat inflammatory conditions. The secretome derived from adipose-derived stem cells (ASCs) has anti-inflammatory effects, making it a promising therapeutic option for IBD. AIM: To investigate the anti-inflammatory effects of the secretome obtained from ASCs synthesizing etanercept on colon cells and in a dextran sulfate sodium (DSS)-induced IBD mouse model. METHODS: ASCs were transfected with etanercept-encoding mini-circle plasmids to create etanercept-producing cells. The secretory material from these cells was then tested for anti-inflammatory effects both in vitro and in a DSS-induced IBD mouse model. RESULTS: This study revealed promising results indicating that the group treated with the secretome derived from etanercept-synthesizing ASCs [Etanercept-Secretome (Et-Sec) group] had significantly lower expression levels of inflammatory mediators, such as interleukin-6, Monocyte Chemoattractant Protein-1, and TNF-α, when compared to the control secretome (Ct-Sec). Moreover, the Et-Sec group exhibited a marked therapeutic effect in terms of preserving the architecture of intestinal tissue compared to the Ct-Sec. CONCLUSION: These results suggest that the secretome derived from ASCs that synthesize etanercept has potential as a therapeutic agent for the treatment of IBD, potentially enhancing treatment efficacy by merging the anti-inflammatory qualities of the ASC secretome with etanercept's targeted approach to better address the multifaceted pathophysiology of IBD.

2.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542268

RESUMO

Recently, artificial exosomes have been developed to overcome the challenges of natural exosomes, such as production scalability and stability. In the production of artificial exosomes, the incorporation of membrane proteins into lipid nanostructures is emerging as a notable approach for enhancing biocompatibility and treatment efficacy. This study focuses on incorporating HEK293T cell-derived membrane proteins into liposomes to create membrane-protein-bound liposomes (MPLCs), with the goal of improving their effectiveness as anticancer therapeutics. MPLCs were generated by combining two key elements: lipid components that are identical to those in conventional liposomes (CLs) and membrane protein components uniquely derived from HEK293T cells. An extensive comparison of CLs and MPLCs was conducted across multiple in vitro and in vivo cancer models, employing advanced techniques such as cryo-TEM (tramsmission electron microscopy) imaging and FT-IR (fourier transform infrared spectroscopy). MPLCs displayed superior membrane fusion capabilities in cancer cell lines, with significantly higher cellular uptake. Additionally, MPLCs maintained their morphology and size better than CLs when exposed to FBS (fetal bovine serum), suggesting enhanced serum stability. In a xenograft mouse model using HeLa and ASPC cancer cells, intravenous administration of MPLCs MPLCs accumulated more in tumor tissues, highlighting their potential for targeted cancer therapy. Overall, these results indicate that MPLCs have superior tumor-targeting properties, possibly attributable to their membrane protein composition, offering promising prospects for enhancing drug delivery efficiency in cancer treatments. This research could offer new clinical application opportunities, as it uses MPLCs with membrane proteins from HEK293T cells, which are known for their efficient production and compatibility with GMP (good manufacturing practice) standards.


Assuntos
Lipossomos , Nanoestruturas , Humanos , Camundongos , Animais , Lipossomos/química , Células HEK293 , Espectroscopia de Infravermelho com Transformada de Fourier , Proteínas de Membrana , Lipídeos/química
3.
Ann Surg Treat Res ; 106(3): 155-168, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38435492

RESUMO

Purpose: Liver fibrosis is a critical health issue with limited treatment options. This study investigates the potential of PGC-Sec, a secretome derived from peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)-overexpressing adipose-derived stem cells (ASCs), as a novel therapeutic strategy for liver fibrosis. Methods: Upon achieving a cellular confluence of 70%-80%, ASCs were transfected with pcDNA-PGC-1α. PGC-Sec, obtained through concentration of conditioned media using ultrafiltration units with a 3-kDa cutoff, was assessed through in vitro assays and in vitro mouse models. Results: In vitro, PGC-Sec significantly reduced LX2 human hepatic stellate cell proliferation and mitigated mitochondrial oxidative stress compared to the control-secretome. In an in vivo mouse model, PGC-Sec treatment led to notable reductions in hepatic enzyme activity, serum proinflammatory cytokine concentrations, and fibrosis-related marker expression. Histological analysis demonstrated improved liver histology and reduced fibrosis severity in PGC-Sec-treated mice. Immunohistochemical staining confirmed enhanced expression of PGC-1α, optic atrophy 1 (a mitochondrial function marker), and peroxisome proliferator-activated receptor alpha (an antifibrogenic marker) in the PGC-Sec-treated group, along with reduced collagen type 1A expression (a profibrogenic marker). Conclusion: These findings highlight the therapeutic potential of PGC-Sec in combating liver fibrosis by enhancing mitochondrial biogenesis and function, and promoting antifibrotic processes. PGC-Sec holds promise as a novel treatment strategy for liver fibrosis.

4.
Exp Mol Med ; 55(5): 910-925, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37121975

RESUMO

Insulin resistance is a major contributor to the pathogenesis of several human diseases, including type 2 diabetes, hypertension, and hyperlipidemia. Notably, insulin resistance and hypertension share common abnormalities, including increased oxidative stress, inflammation, and organelle dysfunction. Recently, we showed that excess intracellular Ca2+, a known pathogenic factor in hypertension, acts as a critical negative regulator of insulin signaling by forming Ca2+-phosphoinositides that prevent the membrane localization of AKT, a key serine/threonine kinase signaling molecule. Whether preventing intracellular Ca2+ overload improves insulin sensitivity, however, has not yet been investigated. Here, we show that the antihypertensive agent candesartan, compared with other angiotensin-II receptor blockers, has previously unrecognized beneficial effects on attenuating insulin resistance. We found that candesartan markedly reduced palmitic acid (PA)-induced intracellular Ca2+ overload and lipid accumulation by normalizing dysregulated store-operated channel (SOC)-mediated Ca2+ entry into cells, which alleviated PA-induced insulin resistance by promoting insulin-stimulated AKT membrane localization and increased the phosphorylation of AKT and its downstream substrates. As pharmacological approaches to attenuate intracellular Ca2+ overload in vivo, administering candesartan to obese mice successfully decreased insulin resistance, hepatic steatosis, dyslipidemia, and tissue inflammation by inhibiting dysregulated SOC-mediated Ca2+ entry and ectopic lipid accumulation. The resulting alterations in the phosphorylation of key signaling molecules consequently alleviate impaired insulin signaling by increasing the postprandial membrane localization and phosphorylation of AKT. Thus, our findings provide robust evidence for the pleiotropic contribution of intracellular Ca2+ overload in the pathogenesis of insulin resistance and suggest that there are viable approved drugs that can be repurposed for the treatment of insulin resistance and hypertension.


Assuntos
Diabetes Mellitus Tipo 2 , Hipertensão , Resistência à Insulina , Camundongos , Animais , Humanos , Resistência à Insulina/fisiologia , Cálcio , Proteínas Proto-Oncogênicas c-akt , Antagonistas de Receptores de Angiotensina/uso terapêutico , Hipertensão/tratamento farmacológico , Insulina , Inflamação , Angiotensinas/uso terapêutico , Lipídeos
5.
Sci Rep ; 13(1): 101, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596838

RESUMO

Tranilast, an anti-allergic drug used in the treatment of bronchial asthma, was identified as an inhibitor of the transcription factor Forkhead box O-1 (FoxO-1) by high throughput chemical library screening in the present study. Based on FoxO-1's role in apoptotic cell death and differentiation, we examined the effect of tranilast on palmitic acid (PA)-induced cell damage in INS-1 cells. Tranilast substantially inhibited lipoapoptosis and restored glucose-stimulated insulin secretion under high PA exposure. Moreover, PA-mediated downregulation of PDX-1, MafA, and insulin expression was attenuated by tranilast. PA-induced oxidative and ER stress were also reduced in the presence of tranilast. These protective effects were accompanied by increased phosphorylation and decreased nuclear translocation of FoxO-1. Conversely, the effects of tranilast were diminished when treated in transfected cells with FoxO-1 phosphorylation mutant (S256A), suggesting that the tranilast-mediated effects are associated with inactivation of FoxO-1. Examination of the in vivo effects of tranilast using wild type and diabetic db/db mice showed improved glucose tolerance along with FoxO-1 inactivation in the pancreas of the tranilast-treated groups. Thus, we report here that tranilast has protective effects against PA-induced lipotoxic stress in INS-1 cells, at least partly, via FoxO-1 inactivation, which results in improved glucose tolerance in vivo.


Assuntos
Células Secretoras de Insulina , Ácido Palmítico , Camundongos , Animais , Ácido Palmítico/farmacologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Apoptose , Glucose/metabolismo
6.
Mol Biol Rep ; 49(9): 8859-8870, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35941418

RESUMO

BACKGROUND: Hypoxic preconditioning (HP) is a stem cell preconditioning modality designed to augment the therapeutic effects of mesenchymal stem cells (MSCs). Although autophagy is expected to play a role in HP, very little is known regarding the relationship between HP and autophagy. METHODS AND RESULTS: The adipose-derived stem cell (ASC)-secretome obtained under normoxia (NCM) and ASC-secretome obtained under HP (HCM) were obtained by culturing ASCs for 24 h under normoxic (21% partial pressure of O2) and hypoxic (1% partial pressure of O2) conditions, respectively. Subsequently, to determine the in vivo effects of HCM, each secretome was injected into 70% partially hepatectomized mice, and liver specimens were obtained. HCM significantly reduced the apoptosis of thioacetamide-treated AML12 hepatocytes and promoted the autophagic processes of the cells (P < 0.05). Autophagy blockage by either bafilomycin A1 or ATG5 siRNA significantly abrogated the anti-apoptotic effect of HCM (P < 0.05), demonstrating that HCM exerts its anti-apoptotic effect by promoting autophagy. The effect of HCM - reduction of cell apoptosis and promotion of autophagic process - was also demonstrated in a mouse model. CONCLUSIONS: HP appears to induce ASCs to release a secretome with enhanced anti-apoptotic effects by promoting the autophagic process of ASCs.


Assuntos
Tecido Adiposo , Secretoma , Adipócitos , Tecido Adiposo/metabolismo , Animais , Autofagia , Humanos , Camundongos , Células-Tronco
7.
Genomics ; 114(4): 110407, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35716820

RESUMO

To explore extracellular vesicle microRNAs (EV miRNAs) and their target mRNAs in relation to diabetic kidney disease (DKD), we performed paired plasma and urinary EV small RNA sequencing (n = 18) in patients with type 2 diabetes and DKD (n = 5) and healthy subjects (n = 4) and metabolic network analyses using our own miRNA and public mRNA datasets. We found 13 common differentially expressed EV miRNAs in both fluids and 17 target mRNAs, including RRM2, NT5E, and UGDH. Because succinate dehydrogenase B was suggested to interact with proteins encoded by these three genes, we measured urinary succinate and adenosine in a validation study (n = 194). These two urinary metabolite concentrations were associated with DKD progression. In addition, renal expressions of NT5E and UGDH proteins were increased in db/db mice with DKD compared to control mice. In conclusion, we profiled DKD-related EV miRNAs in plasma and urine samples and found their relevant target pathways.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Vesículas Extracelulares , MicroRNAs , Animais , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/genética , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Camundongos , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo
8.
Cell Death Differ ; 29(7): 1423-1432, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35017647

RESUMO

Apoptotic cells are rapidly engulfed and removed by phagocytes after displaying cell surface eat-me signals. Among many phospholipids, only phosphatidylserine (PS) is known to act as an eat-me signal on apoptotic cells. Using unbiased proteomics, we identified externalized phosphatidylinositides (PIPs) as apoptotic eat-me signals recognized by CD14+ phagocytes. Exofacial PIPs on the surfaces of early and late-apoptotic cells were observed in patches and blebs using anti-PI(3,4,5)P3 antibody, AKT- and PLCδ PH-domains, and CD14 protein. Phagocytosis of apoptotic cells was blocked either by masking exofacial PIPs or by CD14 knockout in phagocytes. We further confirmed that exofacial PIP+ thymocytes increased dramatically after in vivo irradiation and that exofacial PIP+ cells represented more significant populations in tissues of Cd14-/- than WT mice, especially after induction of apoptosis. Our findings reveal exofacial PIPs to be previously unknown cell death signals recognized by CD14+ phagocytes.


Assuntos
Fagocitose , Transdução de Sinais , Animais , Apoptose/fisiologia , Camundongos , Fagócitos/metabolismo , Fagocitose/fisiologia , Fosfatidilserinas/metabolismo , Transdução de Sinais/fisiologia
9.
Cancer Res Treat ; 54(1): 157-173, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33831291

RESUMO

PURPOSE: mTORC1 and mTORC2 inhibition by Ku-0063794 could confer profound anticancer effects against cancer cells because it eliminates feedback activation of Akt. Herein, we aimed to determine anticancer effects of docetaxel and Ku-0063794, individually or in combination, against breast cancer cells, especially triple-negative breast cancer (TNBC) cells. MATERIALS AND METHODS: MCF-7 breast cancer and MDA-MB-231 TNBC cell lines for in vitro studies and mouse xenograft model for in vivo studies were used to investigate the effect of docetaxel, Ku-0063794, or their combination. RESULTS: In the in vitro experiments, combination therapy synergistically reduced cell viability and induced higher apoptotic cell death in breast cancer cells than the individual monotherapies (p < 0.05). Western blot analysis and flow cytometric analysis showed that the combination therapy induced higher apoptotic cell death than the individual monotherapies (p < 0.05). In the in vivo experiment, docetaxel and Ku-0063794 combination therapy reduced the growth of MDA-MB-231 cells xenografted in the nude mice better than in the individual monotherapies (p < 0.05). Immunohistochemistry showed that the combination therapy induced the highest expression of cleaved caspase-3 and the lowest expression of Bcl-xL in the MDA-MB-231 cells xenografted in the nude mice (p < 0.05). Western blot analysis and immunofluorescence, incorporating both in vitro and in vivo experiments, consistently validated that unlike individual monotherapies, docetaxel and Ku-0063794 combination therapy significantly inhibited epithelial-mesenchymal transition (EMT) and autophagy (p < 0.05). CONCLUSION: These data suggest that docetaxel and Ku-0063794 combination therapy has higher anticancer activities over individual monotherapies against MDA-MB-231 TNBC cells through a greater inhibition of autophagy and EMT.


Assuntos
Antineoplásicos/farmacologia , Docetaxel/farmacologia , Inibidores Enzimáticos/farmacologia , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Morfolinas , Pirimidinas
10.
Ann Surg Treat Res ; 101(6): 322-331, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34934759

RESUMO

PURPOSE: Survivin is a typical antiapoptotic protein. It is copiously expressed during human fetal development but is infrequently present in adult tissues. In this experiment, we researched the treatment effect of the secretome that adipose-derived stem cells (ASCs) transfected with survivin. METHODS: First of all, we generated survivin-overexpressing ASCs transfected with a plasmid comprising a gene encoding survivin. The secreted substances released from survivin-overexpressing ASCs (survivin-secretome) were collected, and were determined their in vitro and in vivo therapeutic potential, especially in the model of liver impairment. RESULTS: In vitro, the survivin-secretome significantly increased cell viability and promoted the expression of proliferation-related markers (proliferating cell nuclear antigen [PCNA], phospho-signal transducer and activator of transcription 3 (p-STAT3), hepatocyte growth factor [HGF], vascular endothelial growth factor [VEGF]) and anti-apoptosis-related markers (myeloid cell leukemia-1 [Mcl-1] and survivin) (P < 0.05). In vivo using 70% hepatectomy mice, the survivin-secretome group exhibited the lowest serum levels of interleukin-6, tumor necrosis factor-α (P < 0.05). The serum levels of liver transaminases (alanine aminotransferase and aspartate aminotransferase) were also the lowest in the survivin-secretome group (P < 0.05). The survivin-secretome group also exhibited the highest liver regeneration on the 7th day after 70% partial hepatectomy (P < 0.05). In the subsequent liver specimen analysis, the specimens of survivin-secretome exhibited the highest expression of p-STAT3, HGF, VEGF, PCNA, and Mcl-1 and the lowest expression of bcl-2-like protein 4 (P < 0.05). CONCLUSION: Taken together, secretome secreted by survivin-overexpressing ASCs could be an effective way to improve liver regeneration and repair for liver injury treatment.

11.
Nutrients ; 13(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34959925

RESUMO

Amyloid-ß (Aß) accumulation in the hippocampus is an essential event in the pathogenesis of Alzheimer's disease. Insoluble Aß is formed through the sequential proteolytic hydrolysis of the Aß precursor protein, which is cleaved by proteolytic secretases. However, the pathophysiological mechanisms of Aß accumulation remain elusive. Here, we report that rats fed high-phytate diets showed Aß accumulation and increased apoptotic neuronal cell death in the hippocampus through the activation of the amyloidogenic pathway in the hippocampus. Immunoblotting and immunohistochemical analyses confirmed that the overexpression of BACE1 ß-secretase, a critical enzyme for Aß generation, exacerbated the hippocampal Aß accumulation in rats fed high-phytate diets. Moreover, we identified that parathyroid hormone, a physiological hormone responding to the phytate-mediated dysregulation of calcium and phosphate homeostasis, plays an essential role in the transcriptional activation of the Aß precursor protein and BACE1 through the vitamin D receptor and retinoid X receptor axis. Thus, our findings suggest that phytate-mediated dysregulation of calcium and phosphate is a substantial risk factor for elevated Aß accumulation and apoptotic neuronal cell death in rats.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apoptose/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Hipocampo/metabolismo , Neurônios/fisiologia , Ácido Fítico/efeitos adversos , Doença de Alzheimer/etiologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Cálcio/metabolismo , Modelos Animais de Doenças , Feminino , Hipocampo/citologia , Hormônio Paratireóideo/fisiologia , Fosfatos/metabolismo , Ratos Sprague-Dawley , Receptores de Calcitriol/metabolismo , Receptores X de Retinoides/metabolismo
12.
Chem Rev ; 121(24): 15075-15140, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34677946

RESUMO

A substantial amount of research effort has been directed toward the development of Pt-based catalysts with higher performance and durability than conventional polycrystalline Pt nanoparticles to achieve high-power and innovative energy conversion systems. Currently, attention has been paid toward expanding the electrochemically active surface area (ECSA) of catalysts and increase their intrinsic activity in the oxygen reduction reaction (ORR). However, despite innumerable efforts having been carried out to explore this possibility, most of these achievements have focused on the rotating disk electrode (RDE) in half-cells, and relatively few results have been adaptable to membrane electrode assemblies (MEAs) in full-cells, which is the actual operating condition of fuel cells. Thus, it is uncertain whether these advanced catalysts can be used as a substitute in practical fuel cell applications, and an improvement in the catalytic performance in real-life fuel cells is still necessary. Therefore, from a more practical and industrial point of view, the goal of this review is to compare the ORR catalyst performance and durability in half- and full-cells, providing a differentiated approach to the durability concerns in half- and full-cells, and share new perspectives for strategic designs used to induce additional performance in full-cell devices.


Assuntos
Platina , Polímeros , Catálise , Eletrodos , Eletrólitos/química , Platina/química , Polímeros/química
13.
J Clin Invest ; 131(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34237031

RESUMO

BACKGROUNDMolecular characterization in pediatric papillary thyroid cancer (PTC), distinct from adult PTC, is important for developing molecularly targeted therapies for progressive radioiodine-refractory (131I-refractory) PTC.METHODSPTC samples from 106 pediatric patients (age range: 4.3-19.8 years; n = 84 girls, n = 22 boys) who were admitted to SNUH (January 1983-March 2020) were available for genomic profiling. Previous transcriptomic data from 125 adult PTC samples were used for comparison.RESULTSWe identified genetic drivers in 80 tumors: 31 with fusion oncogenes (RET in 21 patients, ALK in 6 patients, and NTRK1/3 in 4 patients); 47 with point mutations (BRAFV600E in 41 patients, TERTC228T in 2 patients [1 of whom had a coexisting BRAFV600E], and DICER1 variants in 5 patients); and 2 with amplifications. Fusion oncogene PTCs, which are predominantly detected in younger patients, were at a more advanced stage and showed more recurrent or persistent disease compared with BRAFV600E PTCs, which are detected mostly in adolescents. Pediatric fusion PTCs (in patients <10 years of age) had lower expression of thyroid differentiation genes, including SLC5A5, than did adult fusion PTCs. Two girls with progressive 131I-refractory lung metastases harboring a TPR-NTRK1 or CCDC6-RET fusion oncogene received fusion-targeted therapy; larotrectinib and selpercatinib decreased the size of the tumor and restored 125I radioiodine uptake. The girl with the CCDC6-RET fusion oncogene received 131I therapy combined with selpercatinib, resulting in a tumor response. In vitro 125I uptake and 131I clonogenic assays showed that larotrectinib inhibited tumor growth and restored radioiodine avidity.CONCLUSIONSIn pediatric patients with fusion oncogene PTC who have 131I-refractory advanced disease, selective fusion-directed therapy may restore radioiodine avidity and lead to a dramatic tumor response, underscoring the importance of molecular testing in pediatric patients with PTC.FUNDINGThe Ministry of Science, ICT and Future Planning (NRF-2016R1A2B4012417 and 2019R1A2C2084332); the Korean Ministry of Health and Welfare (H14C1277); the Ministry of Education (2020R1A6A1A03047972); and the SNUH Research Fund (04-2015-0830).TRIAL REGISTRATIONTwo patients received fusion-targeted therapy with larotrectinib (NCT02576431; NAVIGATE) or selpercatinib (LOXO-RET-18018).


Assuntos
Terapia de Alvo Molecular/métodos , Proteínas Proto-Oncogênicas c-ret/genética , Receptor trkA/genética , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/terapia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/terapia , Adolescente , Fatores Etários , Criança , Pré-Escolar , Terapia Combinada , Feminino , Humanos , Radioisótopos do Iodo/farmacocinética , Radioisótopos do Iodo/uso terapêutico , Masculino , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Pirazóis/uso terapêutico , Piridinas/uso terapêutico , Pirimidinas/uso terapêutico , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/uso terapêutico , Receptor trkA/antagonistas & inibidores , Câncer Papilífero da Tireoide/radioterapia , Neoplasias da Glândula Tireoide/radioterapia , Transcriptoma , Adulto Jovem
14.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799789

RESUMO

It is challenging to overcome the low response rate of everolimus in the treatment of patients with hepatocellular carcinoma (HCC). To overcome this challenge, we combined everolimus with Ku0063794, the inhibitor of mTORC1 and mTORC2, to achieve higher anticancer effects. However, the precise mechanism for the synergistic effects is not clearly understood yet. To achieve this aim, the miRNAs were selected that showed the most significant variation in expression according to the mono- and combination therapy of everolimus and Ku0063794. Subsequently, the roles of specific miRNAs were determined in the processes of the treatment modalities. Compared to individual monotherapies, the combination therapy significantly reduced viability, increased apoptosis, and reduced autophagy in HepG2 cells. The combination therapy led to significantly lower expression of miR-4790-3p and higher expression of zinc finger protein225 (ZNF225)-the predicted target of miR-4790-3p. The functional study of miR-4790-3p and ZNF225 revealed that regarding autophagy, miR-4790-3p promoted it, while ZNF225 inhibited it. In addition, regarding apoptosis, miR-4790-3p inhibited it, while ZNF225 promoted it. It was also found that HCC tissues were characterized by higher expression of miR-4790-3p and lower expression of ZNF225; HCC tissues were also characterized by higher autophagic flux. We, thus, conclude that the potentiated anticancer effect of the everolimus and Ku0063794 combination therapy is strongly associated with reduced autophagy resulting from diminished expression of miR-4790-3p, as well as higher expression of ZNF225.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Everolimo/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , Morfolinas/farmacologia , Pirimidinas/farmacologia , Antineoplásicos/farmacologia , Apoptose/genética , Autofagia/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sinergismo Farmacológico , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Inibidores Enzimáticos/farmacologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo
15.
Endocrinol Metab (Seoul) ; 36(2): 447-454, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33789034

RESUMO

BACKGROUND: Di-2-ethylhexyl phthalate (DEHP) is known to disrupt thyroid hormonal status. However, the underlying molecular mechanism of this disruption is unclear. Therefore, we investigated the direct effects of DEHP on the thyroid gland. METHODS: DEHP (vehicle, 50 mg/kg, and 500 mg/kg) was administered to Sprague-Dawley rats for 2 weeks. The expression of the thyroid hormone synthesis pathway in rat thyroid tissues was analyzed through RNA sequencing analysis, quantitative reverse transcription-polymerase chain reaction (RT-PCR), and immunohistochemical (IHC) staining. DEHP was treated to FRTL-5 rat thyroid cells, and an RT-PCR analysis was performed. A reporter gene assay containing the promoter of thyroid stimulating hormone receptor (TSHR) in Nthy-ori 3-1 human thyroid cells was constructed, and luciferase activity was determined. RESULTS: After DEHP treatment, the free thyroxine (T4) and total T4 levels in rats significantly decreased. RNA sequencing analysis of rat thyroid tissues showed little difference between vehicle and DEHP groups. In the RT-PCR analysis, Tshr expression was significantly lower in both DEHP groups (50 and 500 mg/kg) compared to that in the vehicle group, and IHC staining showed that TSHR expression in the 50 mg/kg DEHP group significantly decreased. DEHP treatment to FRTL-5 cells significantly down-regulated Tshr expression. DEHP treatment also reduced luciferase activity in a reporter gene assay for TSHR. CONCLUSION: Although overall genetic changes in the thyroid hormone synthesis pathway are not clear, DEHP exposure could significantly down-regulate Tshr expression in thyroid glands. Down-regulation of Tshr gene appears to be one of potential mechanisms of thyroid disruption by DEHP exposure.


Assuntos
Dietilexilftalato , Células Epiteliais da Tireoide , Animais , Dietilexilftalato/metabolismo , Dietilexilftalato/toxicidade , Expressão Gênica , Ratos , Ratos Sprague-Dawley , Receptores da Tireotropina/genética , Células Epiteliais da Tireoide/metabolismo , Glândula Tireoide/metabolismo
16.
Int J Mol Med ; 47(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33448314

RESUMO

Mesenchymal stem cells (MSCs) have the function of repairing damaged tissue, which is known to be mediated by the secretome, the collection of secretory materials shed from MSCs. Adjusting the culture conditions of MSCs can lead to a significant difference in the composition of the secretome. It was hypothesized that pre­sensitization of MSCs with specific disease­causing agents could harness MSCs to release the therapeutic materials specialized for the disease. To validate this hypothesis, the present study aimed to generate a 'disease­specific secretome' for hepatitis caused by hepatitis B virus using hepatitis BX antigen (HBx) as a disease­causing material. Secretary materials (HBx­IS) were collected following the stimulation of adipose­derived stem cells (ASCs) with 100­fold diluted culture media of AML12 hepatocytes that had been transfected with pcDNA­HBx for 24 h. An animal model of hepatitis B was generated by injecting HBx into mice, and the mice were subsequently intravenously administered a control secretome (CS) or HBx­IS. Compared with the CS injection, the HBx­IS injection significantly reduced the serum levels of interleukin­6 and tumor necrosis factor­α (pro­inflammatory cytokines). Western blot analysis and immunohistochemistry of the liver specimens revealed that the HBx­IS injection led to a higher expression of liver regeneration­related markers, including hepatocyte growth factor and proliferating cell nuclear antigen, a lower expression of pro­apoptotic markers, such as cleaved caspase 3 and Bim in mouse livers, and a lower expression of pro­inflammatory markers (F4/80 and CD68) compared to the CS injection. HBx­IS exhibited higher liver regenerative, anti­inflammatory and anti­apoptotic properties, particularly in the mouse model of hepatitis B compared to CS. This suggests that the secretome obtained by stimulating ASCs with disease­causing agents may have a more prominent therapeutic effect on the specific disease than the naïve secretome.


Assuntos
Tecido Adiposo/metabolismo , Vírus da Hepatite B/metabolismo , Hepatite B , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo/patologia , Animais , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Hepatite B/tratamento farmacológico , Hepatite B/metabolismo , Hepatite B/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos Endogâmicos BALB C , Transativadores/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , ômega-Cloroacetofenona
17.
Sci Rep ; 11(1): 874, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441650

RESUMO

Currently, there is no appropriate treatment option for patients with sorafenib-resistant hepatocellular carcinoma (HCC). Meanwhile, pronounced anticancer activities of newly-developed mitochondria-accumulating self-assembly peptides (Mito-FF) have been demonstrated. This study intended to determine the anticancer effects of Mito-FF against sorafenib-resistant Huh7 (Huh7-R) cells. Compared to sorafenib, Mito-FF led to the generation of relatively higher amounts of mitochondrial reactive oxygen species (ROS) as well as the greater reduction in the expression of antioxidant enzymes (P < 0.05). Mito-FF was found to significantly promote cell apoptosis while inhibiting cell proliferation of Huh7-R cells. Mito-FF also reduces the expression of antioxidant enzymes while significantly increasing mitochondrial ROS in Huh7-R cells. The pro-apoptotic effect of Mito-FFs for Huh7-R cells is possibly caused by their up-regulation of mitochondrial ROS, which is caused by the destruction of the mitochondria of HCC cells.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Compostos Organofosforados/uso terapêutico , Peptídeos/farmacologia , Fenilalanina/uso terapêutico , Pirenos/uso terapêutico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Mitocôndrias/metabolismo , Compostos Organofosforados/farmacologia , Peptídeos/metabolismo , Peptídeos/uso terapêutico , Fenilalanina/farmacologia , Pirenos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sorafenibe/farmacologia
18.
FEBS Open Bio ; 11(1): 61-74, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32860664

RESUMO

Several studies have indicated that cholestatic liver damage involves mitochondria dysfunction. However, the precise mechanism by which hydrophobic bile salts cause mitochondrial dysfunction is not clear. In this study, we intended to determine the pathogenesis of cholestatic liver injury associated with peroxisome proliferator-activated receptor-γ co-activator 1α (PGC-1α). A mouse model of cholestatic liver disease was generated by surgical ligation of the bile duct (BDL), and a mouse model of fibrosis was developed through serial administration of thioacetamide. After obtaining liver specimens on scheduled days, we compared the expression of the antioxidant enzymes (superoxide dismutase 2 [SOD2], catalase, and glutathione peroxidase-1[GPx-1]) and PGC-1α in livers from mice with fibrosis and cholestasis using western blotting, immunohistochemistry, and immunofluorescence. We found that cholestatic livers exhibit lower expression of antioxidant enzymes, such as SOD2, catalase, and PGC-1α. In contrast, fibrotic livers exhibit higher expression of antioxidant enzymes and PGC-1α. In addition, cholestatic livers exhibited significantly lower expression of pro-apoptotic markers (Bax) as compared to fibrotic livers. It is well known that overexpression of PGC-1α increases mitochondrial antioxidant enzyme expression, and vice versa. Thus, we concluded that obstructive cholestasis decreases expression of PGC-1α, which may lead to decreased expression of mitochondrial antioxidant enzymes, thereby rendering mice with cholestatic livers vulnerable to ROS-induced cell death.


Assuntos
Colestase/patologia , Cirrose Hepática Experimental/patologia , Fígado/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Ductos Biliares/cirurgia , Catalase/metabolismo , Colestase/etiologia , Modelos Animais de Doenças , Regulação para Baixo , Humanos , Ligadura , Fígado/citologia , Fígado/enzimologia , Cirrose Hepática Experimental/induzido quimicamente , Masculino , Camundongos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Tioacetamida/administração & dosagem , Tioacetamida/toxicidade
19.
J Biol Chem ; 295(44): 14878-14892, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32839272

RESUMO

Adipocyte browning appears to be a potential therapeutic strategy to combat obesity and related metabolic disorders. Recent studies have shown that apelin, an adipokine, stimulates adipocyte browning and has negative cross-talk with angiotensin II receptor type 1 (AT1 receptor) signaling. Here, we report that losartan, a selective AT1 receptor antagonist, induces browning, as evidenced by an increase in browning marker expression, mitochondrial biogenesis, and oxygen consumption in murine adipocytes. In parallel, losartan up-regulated apelin expression, concomitant with increased phosphorylation of protein kinase B and AMP-activated protein kinase. However, the siRNA-mediated knockdown of apelin expression attenuated losartan-induced browning. Angiotensin II cotreatment also inhibited losartan-induced browning, suggesting that AT1 receptor antagonism-induced activation of apelin signaling may be responsible for adipocyte browning induced by losartan. The in vivo browning effects of losartan were confirmed using both C57BL/6J and ob/ob mice. Furthermore, in vivo apelin knockdown by adeno-associated virus carrying-apelin shRNA significantly inhibited losartan-induced adipocyte browning. In summary, these data suggested that AT1 receptor antagonism by losartan promotes the browning of white adipocytes via the induction of apelin expression. Therefore, apelin modulation may be an effective strategy for the treatment of obesity and its related metabolic disorders.


Assuntos
Adipócitos Marrons/efeitos dos fármacos , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Apelina/biossíntese , Losartan/farmacologia , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Células 3T3-L1 , Adipócitos Marrons/citologia , Adipócitos Marrons/metabolismo , Animais , Apelina/genética , Diferenciação Celular , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo
20.
Int J Mol Sci ; 21(17)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854415

RESUMO

Here, we provide the possibility of a novel chemotherapeutic agent against gastric cancer cells, comprising the combination of 5-fluorouracil (5-FU) and a mitochondria-targeting self-assembly peptide, which is a phenylalanine dipeptide with triphenyl phosphonium (Mito-FF). The anticancer effects and mechanisms of 5-FU and Mito-FF, individually or in combination, were compared through both in vitro and in vivo models of gastric cancer. Our experiments consistently demonstrated that the 5-FU and Mito-FF combination therapy was superior to monotherapy with either, as manifested by both higher reduction of proliferation as well as an induction of apoptotic cell death. Interestingly, we found that combining 5-FU with Mito-FF leads to a significant increase of reactive oxygen species (ROS) and reduction of antioxidant enzymes in gastric cancer cells. Moreover, the inhibition of ROS abrogated the pro-apoptotic effects of combination therapy, suggesting that enhanced oxidative stress could be the principal mechanism of the action of combination therapy. We conclude that the combination of 5-FU and Mito-FF exerts potent antineoplastic activity against gastric cancer cells, primarily by promoting ROS generation and suppressing the activities of antioxidant enzymes.


Assuntos
Dipeptídeos/administração & dosagem , Fluoruracila/administração & dosagem , Mitocôndrias/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Animais , Catalase/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dipeptídeos/química , Dipeptídeos/farmacologia , Sinergismo Farmacológico , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/genética , Humanos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Superóxido Dismutase/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...