Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 10(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38667676

RESUMO

Engineered bone scaffolds should mimic the natural material to promote cell adhesion and regeneration. For this reason, natural biopolymers are becoming a gold standard in scaffold production. In this study, we proposed a hybrid scaffold produced using gellan gum, hydroxyapatite, and Poly (ethylene glycol) within the addition of the ginseng compound K (CK) as a candidate for bone regeneration. The fabricated scaffold was physiochemically characterized. The morphology studied by scanning electron microscopy (SEM) and image analysis revealed a pore distribution suitable for cells growth. The addition of CK further improved the biological activity of the hybrid scaffold as demonstrated by the MTT assay. The addition of CK influenced the scaffold morphology, decreasing the mean pore diameter. These findings can potentially help the development of a new generation of hybrid scaffolds to best mimic the natural tissue.

2.
Biomater Sci ; 12(2): 479-494, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38090986

RESUMO

Cartilage defects can be difficult to heal, potentially leading to complications such as osteoarthritis. Recently, a tissue engineering approach that uses scaffolds and growth factors has been proposed to regenerate new cartilage tissues. Herein, we investigated the application of hyaluronic acid (HA) gel loaded with transforming growth factor-beta 3 (TGF-ß3) for enhanced cartilage regeneration. We assessed the clinical conditions required to efficiently enhance the ability of the modified HA gel to repair defective cartilage. Based on our findings, the prepared HA gel exhibited good physicochemical and mechanical properties and was non-toxic and non-inflammatory. Moreover, HA gel-loaded TGF-ß3 (HAT) had improved biocompatibility and promoted the synthesis of cartilage-specific matrix and collagen, further improving its ability to repair defects. The application of HAT resulted in an initial burst release of HA, which degraded slowly in vivo. Finally, HAT combined with microfracture-inducing bone marrow stem cells could significantly improve the cartilage microenvironment and regeneration of cartilage defects. Our results indicate that HA is a suitable material for developing growth factor carriers, whereas HAT is a promising candidate for cartilage regeneration. Furthermore, this differentiated strategy provides a rapid and effective clinical approach for next-generation cartilage regeneration.


Assuntos
Ácido Hialurônico , Células-Tronco Mesenquimais , Ácido Hialurônico/química , Fator de Crescimento Transformador beta3/química , Hidrogéis/química , Cartilagem/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia
3.
Int J Biol Macromol ; 141: 51-59, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31442504

RESUMO

Hydrogels have shown to be advantageous in supporting damaged cartilage because of its analogous to the extracellular matrix (ECM) of cartilage tissue. However, problems such as infection and inflammation are still a challenge to be solved. In terms of tissue engineering, natural materials are more advantageous than synthetic materials in biocompatibility and biodegradability status. Herein, physically blended nature-derived gellan gum (GG) hydrogel and hyaluronic acid (HA) hydrogel is suggested as a one of solution for cartilage tissue engineering material. The purpose of this study is to determine the effect of GG/HA hydrogel in vitro and in vivo. The chemical and mechanical properties were measured to confirm the compatibility of hydrogels for cartilage tissue engineering. The viability, proliferation, morphology, and gene expression of chondrocytes encapsulated in hydrogels were examined in vitro. Furthermore, the beneficial effect of the blended hydrogel was confirmed by performing the in vivo experiment. The chemical properties of hydrogels confirmed the well physically blended hydrogels. The mechanical studies of hydrogels displayed that as the content of HA increases, the swelling ratio was higher, compressive strength decreased and degradation was faster. Therefore, to use the hydrogel of GG and HA network, the proper amount must be blended. The in vitro study of chondrocytes encapsulated GG/HA hydrogel showed that the proper amount of HA enhanced the cell growth, attachment, and gene expression. The in vivo examination verified the advantageous effect of GG/HA hydrogel. Overall results demonstrate that GG/HA hydrogel is suitable for culturing chondrocyte and can be further applied for the treatment of cartilage defects.


Assuntos
Cartilagem , Células Imobilizadas , Condrócitos , Ácido Hialurônico/química , Hidrogéis/química , Polissacarídeos Bacterianos/química , Regeneração , Animais , Cartilagem/lesões , Cartilagem/patologia , Cartilagem/fisiologia , Células Imobilizadas/metabolismo , Células Imobilizadas/patologia , Células Imobilizadas/transplante , Condrócitos/metabolismo , Condrócitos/patologia , Condrócitos/transplante , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...