Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(2): 2356-2363, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297768

RESUMO

Terahertz scattering-type scanning near-field optical microscopy (THz-sSNOM) provides a noninvasive way to probe the low frequency conductivity of materials and to characterize material compositions at the nanoscale. However, the potential capability of atomic compositional analysis with THz nanoscopy remains largely unexplored. Here, we perform THz near-field imaging and spectroscopy on a model rare-earth alloy of lanthanum silicide (La-Si) which is known to exhibit diverse compositional and structural phases. We identify subwavelength spatial variations in conductivity that is manifested as alloy microstructures down to much less than 1 µm in size and is remarkably distinct from the surface topography of the material. Signal contrasts from the near-field scattering responses enable mapping the local silicon/lanthanum content differences. These observations demonstrate that THz-sSNOM offers a new avenue to investigate the compositional heterogeneity of material phases and their related nanoscale electrical as well as optical properties.

2.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081286

RESUMO

We have developed a versatile near-field microscopy platform that can operate at high magnetic fields and below liquid-helium temperatures. We use this platform to demonstrate an extreme terahertz (THz) nanoscope operation and to obtain the first cryogenic magneto-THz time-domain nano-spectroscopy/imaging at temperatures as low as 1.8 K, magnetic fields of up to 5 T, and with operation of 0-2 THz. Our Cryogenic Magneto-Terahertz Scattering-type Scanning Near-field Optical Microscope (or cm-THz-sSNOM) instrument is comprised of three main equipment: (i) a 5 T split pair magnetic cryostat with a custom made insert, (ii) a custom sSNOM instrument capable of accepting ultrafast THz excitation, and (iii) a MHz repetition rate, femtosecond laser amplifier for broadband THz pulse generation and sensitive detection. We apply the cm-THz-sSNOM to obtain proof of principle measurements of superconductors and topological semimetals. The new capabilities demonstrated break grounds for studying quantum materials that require an extreme environment of cryogenic operation and/or applied magnetic fields in nanometer space, femtosecond time, and THz energy scales.

3.
Nat Commun ; 12(1): 258, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431843

RESUMO

The Higgs mechanism, i.e., spontaneous symmetry breaking of the quantum vacuum, is a cross-disciplinary principle, universal for understanding dark energy, antimatter and quantum materials, from superconductivity to magnetism. Unlike one-band superconductors (SCs), a conceptually distinct Higgs amplitude mode can arise in multi-band, unconventional superconductors  via strong interband Coulomb interaction, but is yet to be accessed. Here we discover such hybrid Higgs mode and demonstrate its quantum control by light in iron-based high-temperature SCs. Using terahertz (THz) two-pulse coherent spectroscopy, we observe a tunable amplitude mode coherent oscillation of the complex order parameter from coupled lower and upper bands. The nonlinear dependence of the hybrid Higgs mode on the THz driving fields is distinct from any known SC results: we observe a large reversible modulation of resonance strength, yet with a persisting mode frequency. Together with quantum kinetic modeling of a hybrid Higgs mechanism, distinct from charge-density fluctuations and without invoking phonons or disorder, our result provides compelling evidence for a light-controlled coupling between the electron and hole amplitude modes assisted by strong interband quantum entanglement. Such light-control of Higgs hybridization can be extended to probe many-body entanglement and hidden symmetries in other complex systems.

4.
Phys Rev Lett ; 124(20): 207003, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32501057

RESUMO

We report terahertz (THz) light-induced second harmonic generation, in superconductors with inversion symmetry that forbid even-order nonlinearities. The THz second harmonic emission vanishes above the superconductor critical temperature and arises from precession of twisted Anderson pseudospins at a multicycle, THz driving frequency that is not allowed by equilibrium symmetry. We explain the microscopic physics by a dynamical symmetry breaking principle at sub-THz-cycle by using quantum kinetic modeling of the interplay between strong THz-lightwave nonlinearity and pulse propagation. The resulting nonzero integrated pulse area inside the superconductor leads to light-induced nonlinear supercurrents due to subcycle Cooper pair acceleration, in contrast to dc-biased superconductors, which can be controlled by the band structure and THz driving field below the superconducting gap.

5.
Phys Rev Lett ; 124(15): 157401, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32357060

RESUMO

We discover hidden Rashba fine structure in CH_{3}NH_{3}PbI_{3} and demonstrate its quantum control by vibrational coherence through symmetry-selective vibronic (electron-phonon) coupling. Above a critical threshold of a single-cycle terahertz pump field, a Raman phonon mode distinctly modulates the middle excitonic states with persistent coherence for more than ten times longer than the ones on two sides that predominately couple to infrared phonons. These vibronic quantum beats, together with first-principles modeling of phonon periodically modulated Rashba parameters, identify a threefold excitonic fine structure splitting, i.e., optically forbidden, degenerate dark states in between two bright ones with a narrow, ∼3 nm splitting. Harnessing of vibronic quantum coherence and symmetry inspires light-perovskite quantum control and sub-THz-cycle "Rashba engineering" of spin-split bands for ultimate multifunction device.

6.
J Chem Phys ; 151(24): 244706, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31893879

RESUMO

We report the discovery of helicity-dependent ultrafast photocurrent generation in organic-inorganic perovskite by measuring terahertz (THz) electric field emissions in the time-domain. We find signatures of the circular photogalvanic effect (CPGE) where right circularly polarized light and left circularly polarized light lead to different photocurrent generation. The direction of photocurrent is also resolved by measuring the polarization of the emitted THz pulses. Furthermore, we observe distinct wavelength-dependent, coherent phonon dynamics using THz pump-induced differential reflectivity, indicative of multiple exciton resonances. Both the CPGE and exciton fine structure, together with theoretical simulations, provide compelling and complementary evidence for the existence of Rashba-type bands in perovskite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...