Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(2)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669420

RESUMO

We demonstrate a side-polished fiber-optic ultrasound sensor (SPFS) with a broad frequency bandwidth (dc⁻46 MHz at 6-dB reduction) and a wide amplitude detection range from several kPa to 4.8 MPa. It also exhibits a high acoustic sensitivity of 426 mV/MPa with a signal-to-noise ratio of 35 dB and a noise-equivalent pressure of 6.6 kPa (over 1⁻50 MHz bandwidth) measured at 7-MHz frequency. The SPFS does not require multi-layer-coated structures that are used in other high-sensitivity optical detectors. Without any coating, this uses a microscale-roughened structure for evanescent-field interaction with an external medium acoustically modulated. Such unique structure allows significantly high sensitivity despite having a small detection area of only 0.016 mm² as a narrow line sensor with a width of 8 µm. The SPFS performance is characterized in terms of acoustic frequency, amplitude responses, and sensitivities that are compared with those of a 1-mm diameter piezoelectric hydrophone used as a reference.

2.
Lasers Med Sci ; 33(6): 1237-1244, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29455306

RESUMO

The purpose of this study was to compare dentinal tubule sealing effects of a 532-nm diode-pumped solid-state (DPSS) laser, gallic acid/Fe3+ complex, and three commercially available dentin desensitizers. Human premolars (n = 44) extracted for orthodontics had standardized cervical cavities prepared, etched (37% phosphoric acid) and randomly assigned to either a control (n = 4), or one of five treatment groups (n = 8/group). Desensitizing treatments were either a 532-nm DPSS laser, gallic acid/Fe3+ complex, oxalate-based Super Seal™ (SS), DIO™ Enamel Coating Pen Pro Tooth (Dio), or adhesive-type Hybrid Coat™ (HC). Dentinal fluid flow (DFF) was monitored continuously in real time during the application of each desensitizing agent, by using a nanoliter-scaled fluid flow-measuring device. Following treatment, morphological changes on dentinal surfaces and within tubules were observed by scanning electron microscopy (SEM). DFF rates were significantly reduced after treatment in all experimental groups (P < 0.05), except SS (P > 0.05). The gallic acid/Fe3+ complex reduced DFF rates the most, and significantly (P < 0.05) more than the three commercial dentin desensitizers. There were no significant differences in DFF reduction rates between the gallic acid/Fe3+ complex and the DPSS laser groups (P > 0.05). There were no significant differences in DFF reduction rates among the three commercial dentin desensitizers (P > 0.05). SEM examination of treated dentin showed that the degree of occlusion of dentinal tubules correlated closely with the corresponding reduction in DFF rates. The gallic acid/Fe3+ complex and 532-nm DPSS laser were superior to other desensitizing methods in occluding dentinal tubules and reducing DFF rates.


Assuntos
Dessensibilizantes Dentinários/uso terapêutico , Sensibilidade da Dentina/tratamento farmacológico , Ácido Gálico/química , Ferro/química , Lasers de Estado Sólido/uso terapêutico , Dentina/efeitos dos fármacos , Dentina/ultraestrutura , Dessensibilizantes Dentinários/farmacologia , Líquido Dentinal/efeitos dos fármacos , Líquido Dentinal/efeitos da radiação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...