Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(5)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816232

RESUMO

BACKGROUND: Tumor-infiltrating lymphocytes (TILs) targeting neoantigens can effectively treat a selected set of metastatic solid cancers. However, harnessing TILs for cancer treatments remains challenging because neoantigen-reactive T cells are often rare and exhausted, and ex vivo expansion can further reduce their frequencies. This complicates the identification of neoantigen-reactive T-cell receptors (TCRs) and the development of TIL products with high reactivity for patient treatment. METHODS: We tested whether TILs could be in vitro stimulated against neoantigens to achieve selective expansion of neoantigen-reactive TILs. Given their prevalence, mutant p53 or RAS were studied as models of human neoantigens. An in vitro stimulation method, termed "NeoExpand", was developed to provide neoantigen-specific stimulation to TILs. 25 consecutive patient TILs from tumors harboring p53 or RAS mutations were subjected to NeoExpand. RESULTS: We show that neoantigenic stimulation achieved selective expansion of neoantigen-reactive TILs and broadened the neoantigen-reactive CD4+ and CD8+ TIL clonal repertoire. This allowed the effective isolation of novel neoantigen-reactive TCRs. Out of the 25 consecutive TIL samples, neoantigenic stimulation enabled the identification of 16 unique reactivities and 42 TCRs, while conventional TIL expansion identified 9 reactivities and 14 TCRs. Single-cell transcriptome analysis revealed that neoantigenic stimulation increased neoantigen-reactive TILs with stem-like memory phenotypes expressing IL-7R, CD62L, and KLF2. Furthermore, neoantigenic stimulation improved the in vivo antitumor efficacy of TILs relative to the conventional OKT3-induced rapid TIL expansion in p53-mutated or KRAS-mutated xenograft mouse models. CONCLUSIONS: Taken together, neoantigenic stimulation of TILs selectively expands neoantigen-reactive TILs by frequencies and by their clonal repertoire. NeoExpand led to improved phenotypes and functions of neoantigen-reactive TILs. Our data warrant its clinical evaluation. TRIAL REGISTRATION NUMBER: NCT00068003, NCT01174121, and NCT03412877.


Assuntos
Antígenos de Neoplasias , Linfócitos do Interstício Tumoral , Receptores de Antígenos de Linfócitos T , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Antígenos de Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Camundongos , Memória Imunológica , Animais , Feminino , Fenótipo , Neoplasias/imunologia
2.
Cancer Immunol Res ; 10(8): 932-946, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35749374

RESUMO

Adoptive cellular therapy (ACT) targeting neoantigens can achieve durable clinical responses in patients with cancer. Most neoantigens arise from patient-specific mutations, requiring highly individualized treatments. To broaden the applicability of ACT targeting neoantigens, we focused on TP53 mutations commonly shared across different cancer types. We performed whole-exome sequencing on 163 patients with metastatic solid cancers, identified 78 who had TP53 missense mutations, and through immunologic screening, identified 21 unique T-cell reactivities. Here, we report a library of 39 T-cell receptors (TCR) targeting TP53 mutations shared among 7.3% of patients with solid tumors. These TCRs recognized tumor cells in a TP53 mutation- and human leucocyte antigen (HLA)-specific manner in vitro and in vivo. Twelve patients with chemorefractory epithelial cancers were treated with ex vivo-expanded autologous tumor-infiltrating lymphocytes (TIL) that were naturally reactive against TP53 mutations. However, limited clinical responses (2 partial responses among 12 patients) were seen. These infusions contained low frequencies of mutant p53-reactive TILs that had exhausted phenotypes and showed poor persistence. We also treated one patient who had chemorefractory breast cancer with ACT comprising autologous peripheral blood lymphocytes transduced with an allogeneic HLA-A*02-restricted TCR specific for p53R175H. The infused cells exhibited an improved immunophenotype and prolonged persistence compared with TIL ACT and the patient experienced an objective tumor regression (-55%) that lasted 6 months. Collectively, these proof-of-concept data suggest that the library of TCRs targeting shared p53 neoantigens should be further evaluated for the treatment of patients with advanced human cancers. See related Spotlight by Klebanoff, p. 919.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Neoplasias , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Genes Codificadores dos Receptores de Linfócitos T , Humanos , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/genética , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/imunologia
3.
Science ; 375(6583): 877-884, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35113651

RESUMO

The accurate identification of antitumor T cell receptors (TCRs) represents a major challenge for the engineering of cell-based cancer immunotherapies. By mapping 55 neoantigen-specific TCR clonotypes (NeoTCRs) from 10 metastatic human tumors to their single-cell transcriptomes, we identified signatures of CD8+ and CD4+ neoantigen-reactive tumor-infiltrating lymphocytes (TILs). Neoantigen-specific TILs exhibited tumor-specific expansion with dysfunctional phenotypes, distinct from blood-emigrant bystanders and regulatory TILs. Prospective prediction and testing of 73 NeoTCR signature-derived clonotypes demonstrated that half of the tested TCRs recognized tumor antigens or autologous tumors. NeoTCR signatures identified TCRs that target driver neoantigens and nonmutated viral or tumor-associated antigens, suggesting a common metastatic TIL exhaustion program. NeoTCR signatures delineate the landscape of TILs across metastatic tumors, enabling successful TCR prediction based purely on TIL transcriptomic states for use in cancer immunotherapy.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos do Interstício Tumoral/imunologia , Metástase Neoplásica , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Transcriptoma , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Redes Reguladoras de Genes , Humanos , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , RNA-Seq , Análise de Célula Única
4.
J Clin Oncol ; 40(16): 1741-1754, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104158

RESUMO

PURPOSE: Metastatic breast cancer (mBrCa) is most often an incurable disease with only modest responses to available immunotherapies. This study investigates the immunogenicity of somatic mutations in breast cancer and explores the therapeutic efficacy in a pilot trial of mutation-reactive tumor-infiltrating lymphocytes (TILs) in patients with metastatic disease. PATIENTS AND METHODS: Forty-two patients with mBrCa refractory to previous lines of treatment underwent surgical resection of a metastatic lesion(s), isolation of TIL cultures, identification of exomic nonsynonymous tumor mutations, and immunologic screening for neoantigen reactivity. Clinically eligible patients with appropriate reactivity were enrolled into one cohort of an ongoing phase II pilot trial of adoptive cell transfer of selected neoantigen-reactive TIL, with a short course of pembrolizumab (ClinicalTrials.gov identifier: NCT01174121). RESULTS: TILs were isolated and grown in culture from the resected lesions of all 42 patients with mBrCa, and a median number of 112 (range: 6-563) nonsynonymous mutations per patient were identified. Twenty-eight of 42 (67%) patients contained TIL that recognized at least one immunogenic somatic mutation (median: 3 neoantigens per patient, range: 1-11), and 13 patients demonstrated robust reactivity appropriate for adoptive transfer. Eight patients remained clinically eligible for treatment, and six patients were enrolled on a protocol of adoptive cell transfer of enriched neoantigen-specific TIL, in combination with pembrolizumab (≤ 4 doses). Objective tumor regression was noted in three patients, including one complete response (now ongoing over 5.5 years) and two partial responses (6 and 10 months). CONCLUSION: Most patients with breast cancer generated a natural immune response targeting the expressed products of their cancer mutations. Adoptive transfer of TIL is a highly personalized experimental option for patients with mBrCa shown to be capable of mediating objective responses in this pilot trial and deserves further study.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino , Humanos , Imunoterapia Adotiva/métodos , Linfócitos do Interstício Tumoral , Mutação , Transplante Autólogo
5.
Cell Rep ; 36(9): 109626, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34469727

RESUMO

Somatic mutations in spliceosome genes are found in ∼50% of patients with myelodysplastic syndromes (MDS), a myeloid malignancy associated with low blood counts. Expression of the mutant splicing factor U2AF1(S34F) alters hematopoiesis and mRNA splicing in mice. Our understanding of the functionally relevant alternatively spliced target genes that cause hematopoietic phenotypes in vivo remains incomplete. Here, we demonstrate that reduced expression of H2afy1.1, an alternatively spliced isoform of the histone H2A variant gene H2afy, is responsible for reduced B cells in U2AF1(S34F) mice. Deletion of H2afy or expression of U2AF1(S34F) reduces expression of Ebf1 (early B cell factor 1), a key transcription factor for B cell development, and mechanistically, H2AFY is enriched at the EBF1 promoter. Induced expression of H2AFY1.1 in U2AF1(S34F) cells rescues reduced EBF1 expression and B cells numbers in vivo. Collectively, our data implicate alternative splicing of H2AFY as a contributor to lymphopenia induced by U2AF1(S34F) in mice and MDS.


Assuntos
Processamento Alternativo , Linfócitos B/metabolismo , Histonas/metabolismo , Linfopoese , Síndromes Mielodisplásicas/metabolismo , Fator de Processamento U2AF/metabolismo , Animais , Linfócitos B/imunologia , Sítios de Ligação , Estudos de Casos e Controles , Células HEK293 , Histonas/genética , Humanos , Células K562 , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/imunologia , Regiões Promotoras Genéticas , Transdução de Sinais , Fator de Processamento U2AF/genética , Transativadores/genética , Transativadores/metabolismo
6.
Clin Cancer Res ; 27(18): 5084-5095, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34168045

RESUMO

PURPOSE: Immunotherapies mediate the regression of human tumors through recognition of tumor antigens by immune cells that trigger an immune response. Mutations in the RAS oncogenes occur in about 30% of all patients with cancer. These mutations play an important role in both tumor establishment and survival and are commonly found in hotspots. Discovering T-cell receptors (TCR) that recognize shared mutated RAS antigens presented on MHC class I and class II molecules are thus promising reagents for "off-the-shelf" adoptive cell therapies (ACT) following insertion of the TCRs into lymphocytes. EXPERIMENTAL DESIGN: In this ongoing work, we screened for RAS antigen recognition in tumor-infiltrating lymphocytes (TIL) or by in vitro stimulation of peripheral blood lymphocytes (PBL). TCRs recognizing mutated RAS were identified from the reactive T cells. The TCRs were then reconstructed and virally transduced into PBLs and tested. RESULTS: Here, we detect and report multiple novel TCR sequences that recognize nonsynonymous mutant RAS hotspot mutations with high avidity and specificity and identify the specific class-I and -II MHC restriction elements involved in the recognition of mutant RAS. CONCLUSIONS: The TCR library directed against RAS hotspot mutations described here recognize RAS mutations found in about 45% of the Caucasian population and about 60% of the Asian population and represent promising reagents for "off-the-shelf" ACTs.


Assuntos
Imunoterapia Adotiva , Mutação , Neoplasias/genética , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/uso terapêutico , Proteínas ras/genética , Humanos
7.
J Immunother ; 44(1): 1-8, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33086340

RESUMO

Engineered T cells expressing tumor-specific T-cell receptors (TCRs) are emerging as a mode of personalized cancer immunotherapy that requires identification of TCRs against the products of known driver mutations and novel mutations in a timely fashion. We present a nonviral and non-next-generation sequencing platform for rapid, and efficient neoantigen-specific TCR identification and evaluation that does not require the use of recombinant cloning techniques. The platform includes an innovative method of TCRα detection using Sanger sequencing, TCR pairings and the use of TCRα/ß gene fragments for putative TCR evaluation. Using patients' samples, we validated and compared our new methods head-to-head with conventional approaches used for TCR discovery. Development of a unique demultiplexing method for identification of TCRα, adaptation of synthetic TCRs for gene transfer, and a reliable reporter system significantly shortens TCR discovery time over conventional methods and increases throughput to facilitate testing prospective personalized TCRs for adoptive cell therapy.


Assuntos
Vacinas Anticâncer/imunologia , Epitopos de Linfócito T/genética , Imunoterapia Adotiva/métodos , Análise de Sequência de DNA/métodos , Linfócitos T/metabolismo , Antígenos de Neoplasias/imunologia , Células Cultivadas , Técnicas de Cocultura , Genes Codificadores da Cadeia alfa de Receptores de Linfócitos T , Humanos , Linfócitos T/imunologia , Linfócitos T/transplante
8.
Clin Cancer Res ; 26(6): 1267-1276, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31996390

RESUMO

PURPOSE: The purpose of this study was to evaluate antigen experienced T cells in peripheral blood lymphocytes (PBL) for responses to p53 neoantigens. EXPERIMENTAL DESIGN: PBLs from patients with a mutated TP53 tumor were sorted for antigen-experienced T cells and in vitro stimulation (IVS) was performed with p53 neoantigens. The IVS cultures were stimulated with antigen-presenting cells expressing p53 neoantigens, enriched for 41BB/OX40 and grown with rapid expansion protocol. RESULTS: T-cell responses were not observed in the PBLs of 4 patients who did not have tumor-infiltrating lymphocyte (TIL) responses to mutated TP53. In contrast, 5 patients with TIL responses to mutated TP53 also had similar T-cell responses in their PBLs, indicating that the PBLs and TILs were congruent in p53 neoantigen reactivity. CD4+ and CD8+ T cells were specific for p53R175H, p53Y220C, or p53R248W neoantigens, including a 78% reactive T-cell culture against p53R175H and HLA-A*02:01. Tracking TCRB clonotypes (clonality, top ranked, and TP53 mutation-specific) supported the enrichment of p53 neoantigen-reactive T cells from PBLs. The same T-cell receptor (TCR) from the TIL was found in the IVS cultures in three cases and multiple unique TCRs were found in another patient. TP53 mutation-specific T cells also recognized tumor cell lines bearing the appropriate human leukocyte antigen restriction element and TP53 mutation, indicating these T cells could recognize processed and presented p53 neoantigens. CONCLUSIONS: PBL was a noninvasive source of T cells targeting TP53 mutations for cell therapy and can provide a window into intratumoral p53 neoantigen immune responses.See related commentary by Olivera et al., p. 1203.


Assuntos
Linfócitos T CD8-Positivos , Proteína Supressora de Tumor p53 , Antígenos de Neoplasias/genética , Linfócitos T CD8-Positivos/metabolismo , Humanos , Linfócitos do Interstício Tumoral/metabolismo , Oncogenes , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...