Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 339
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Carbohydr Res ; 541: 109170, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38830279

RESUMO

The development of chitinase tailored for the bioconversion of chitin to chitin oligosaccharides has attracted significant attention due to its potential to alleviate environmental pollution associated with chemical conversion processes. In this present investigation, we purified extracellular chitinase derived from marine Bacillus haynesii to homogeneity and subsequently characterized it. The molecular weight of BhChi was approximately 35 kDa. BhChi displayed its peak catalytic activity at pH 6.0, with an optimal temperature of 37 °C. It exhibited stability across a pH range of 6.0-9.0. In addition, BhChi showed activation in the presence of Mn2+ with the improved activity of 105 U mL-1. Ca2+ and Fe2+ metal ions did not have any significant impact on enzyme activity. Under the optimized enzymatic conditions, there was a notable enhancement in catalytic activity on colloidal chitin with Km of 0.01 mg mL-1 and Vmax of 5.75 mmol min-1. Kcat and catalytic efficiency were measured at 1.91 s-1 and 191 mL mg-1 s-1, respectively. The product profiling of BhChi using thin layer chromatography and Mass spectrometric techniques hinted an exochitinase mode of action with chitobiose and N-Acetyl glucosamine as the products. This study represents the first report on an exochitinase from Bacillus haynesii. Furthermore, the chitinase showcased promising antifungal properties against key pathogens, Fusarium oxysporum and Penicillium chrysogenum, reinforcing its potential as a potent biocontrol agent.


Assuntos
Antifúngicos , Bacillus , Quitina , Quitinases , Quitinases/metabolismo , Quitinases/isolamento & purificação , Quitinases/química , Quitinases/farmacologia , Quitina/química , Quitina/metabolismo , Quitina/farmacologia , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antifúngicos/metabolismo , Bacillus/enzimologia , Fusarium/enzimologia , Fusarium/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Temperatura
2.
Curr Issues Mol Biol ; 46(4): 3729-3740, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38666962

RESUMO

Despite present antiviral agents that can effectively work against HIV-1 replication, side effects and drug resistance have pushed researchers toward novel approaches. In this context, there is a continued focus on discovering new and more effective antiviral compounds, particularly those that have a natural origin. Polysaccharides are known for their numerous bioactivities, including inhibiting HIV-1 infection and replication. In the present study, phosphorylated chitosan oligosaccharides (PCOSs) were evaluated for their anti-HIV-1 potential in vitro. Treatment with PCOSs effectively protected cells from HIV-1-induced lytic effects and suppressed the production of HIV-1 p24 protein. In addition, results show that PCOSs lost their protective effect upon post-infection treatment. According to the results of ELISA, PCOSs notably disrupted the binding of HIV-1 gp120 protein to T cell surface receptor CD4, which is required for HIV-1 entry. Overall, the results point out that PCOSs might prevent HIV-1 infection at the entry stage, possibly via blocking the viral entry through disruption of virus-cell fusion. Nevertheless, the current results only present the potential of PCOSs, and further studies to elucidate its action mechanism in detail are needed to employ phosphorylation of COSs as a method to develop novel antiviral agents.

3.
Chem Biol Drug Des ; 103(3): e14496, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38444006

RESUMO

Chitooligosaccharide (COS) is a derivative of chitosan, which is a natural macromolecular compound. COS has been shown effects in an inflammatory response. Recent reports show that COS derivatives have enhanced anti-inflammatory activity by inhibiting intracellular signals. Evaluation of the anti-inflammatory effect of caffeic acid conjugated COS chain (CA-COS) was performed in this study. The effects of CA-COS on the inflammatory response were demonstrated in lipopolysaccharide-stimulated RAW264.7 macrophages. The results showed that CA-COS inhibited nitric oxide (NO) production and downregulated the gene expression of nitric oxide synthase (iNOS), and cytokines such as tumor necrosis factor-alpha (TNF-α), IL-1ß, and IL-6 without cytotoxic effect. In addition, western blot analysis showed that CA-COS inhibits the protein expression of iNOS and nuclear factor kappa B (NF-kB), including p50 and p65, and mitogen-activated protein kinase (MAPK) signaling pathways. Collectively, these results provide clear evidence for the anti-inflammatory mechanism of CA-COS that show great potential as a novel agent for the prevention and therapy of inflammatory diseases.


Assuntos
Ácidos Cafeicos , Quitosana , Proteínas Quinases Ativadas por Mitógeno , NF-kappa B , Oligossacarídeos , Quitina/farmacologia , Anti-Inflamatórios/farmacologia
4.
Heliyon ; 9(12): e22843, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38144272

RESUMO

Introduction: Withania somnifera (WS) or ashwagandha is an adaptogenic plant used extensively in traditional medicines and as a food supplement. Despite a long history of use and numerous clinical trials, the human pharmacokinetics of withanolides, the active phytochemicals in WS extracts, have not been fully evaluated. This study evaluated the oral pharmacokinetics and bioequivalence of active withanolides in human plasma after administration of a single dose of two commercial ashwagandha extracts containing equal amounts of total withanolides. Methods: This randomized, double-blind, single-dose crossover study of 16 healthy human volunteers evaluated the acute oral bioavailability of withanolides and the bioequivalence of two WS extracts, WS-35 and WS-2.5. WS-35 was standardized to total withanolides not less than 40% comprising not less than 35% withanolide glycosides and WS-2.5 was standardized to 2.5% withanolides. The clinical dosages were normalized to 185 mg of total withanolide in each extract at the bioequivalent dosages. The pharmacokinetic parameters of withanolide A, withanoside IV, withaferin A, and total withanolides were quantified in the blood plasma using a validated LC-MS/MS method. Results: The half-life, C-max, and mean residence time of the total withanolides were 5.18, 5.62 and 4.13 times significantly higher and had lower systemic clearance with WS-35 than with WS-2.5 extract. Considering the plasma AUC 0-inf of total withanolides per mg of each WS extract administered orally, WS-35 was 280.74 times more bioavailable than WS-2.5. Conclusion: The results of this study highlight the importance of withanolide glycosides in improving the pharmacokinetics of WS extracts. Owing to its superior pharmacokinetic profile, WS-35, with 35% withanolide glycosides, is a promising candidate for further studies on Withania somnifera. Clinical trial registration: CTRI/2020/10/028397 [registered on:13/10/2020] (Trial prospectively registered) http://ctri.nic.in/Clinicaltrials/pmaindet2.php?trialid=42149&EncHid=&userName=CTRI/2020/10/028397.

5.
Nat Prod Res ; : 1-8, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37746702

RESUMO

Although chitooligosaccharides (COS) improve the drawbacks of chitosan, their biological activities in medical applications have not been highly appreciated. The main approach is to synthesise the COS derivatives in order to improve the biological properties of the COS. In this study, ferulic acid (FA) grafted onto COS (FA-COS) were synthesised and their mechanism of anti-inflammatory activity was investigated in the murine macrophage cells. The synthesis conditions of FA-COS were optimised and confirmed that the FA was successfully conjugated onto COS with the grafting effect of 15-34%. FA-COS exhibited anti-inflammatory activities via suppressing of nitric oxide formation, reducing iNOS expression at transcription and translation levels, down-regulation of TNF-α, IL-6 and IL-1 ß genes; NF-κB and MAPKs signalling pathways. These results show anti-inflammatory molecular mechanism of FA-COS that exhibit enormous potential for prevention of inflammatory diseases.

6.
Int Immunopharmacol ; 121: 110493, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331299

RESUMO

Acute lung injury leads to the development of chronic conditions such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), asthma as well as alveolar sarcoma. Various investigations are being performed worldwide to understand the pathophysiology of these diseases, develop novel bioactive compounds and inhibitors to target the ailment. Generally, in vivo models are used to understand the disease outcome and therapeutic suppressing effects for which the animals are chemically or physically induced to mimic the onset of definite disease conditions. Amongst the chemical inducing agents, Bleomycin (BLM) is the most successful inducer. It is reported to target various receptors and activate inflammatory pathways, cellular apoptosis, epithelial mesenchymal transition leading to the release of inflammatory cytokines, and proteases. Mice is one of the most widely used animal model for BLM induced pulmonary associated studies apart from rat, rabbit, sheep, pig, and monkey. Although, there is considerable variation amongst in vivo studies for BLM induction which suggests a detailed study on the same to understand the mechanism of action of BLM at molecular level. Hence, herein we have reviewed various chemical inducers, mechanism of action of BLM in inducing lung injury in vivo, its advantages and disadvantages. Further, we have also discussed the rationale behind various in vivo models and recent development in BLM induction for various animals.


Assuntos
Lesão Pulmonar Aguda , Fibrose Pulmonar Idiopática , Doença Pulmonar Obstrutiva Crônica , Camundongos , Ratos , Animais , Ovinos , Coelhos , Suínos , Bleomicina/efeitos adversos , Fibrose Pulmonar Idiopática/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Modelos Animais de Doenças , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pulmão , Camundongos Endogâmicos C57BL
7.
Int J Biol Macromol ; 244: 125472, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37336375

RESUMO

Inflammatory bowel disease (IBD) is an inflammatory disorder that affects the gastrointestinal tract. IBD has become an increasingly common condition in both developed and developing nations over the last few decades, owing to a variety of factors like a rising population and diets packed with processed and junk foods. While the root pathophysiology of IBD is unknown, treatments are focused on medications aimed to mitigate symptoms. Alginate (AG), a marine-derived polysaccharide, is extensively studied for its biocompatibility, pH sensitivity, and crosslinking nature. This polymer is thoroughly researched in drug delivery systems for IBD treatment, as it is naturally available, non-toxic, cost effective, and can be easily and safely cross-linked with other polymers to form an interconnected network, which helps in controlling the release of drugs over an extended period. There are various types of drug delivery systems developed from AG to deliver therapeutic agents; among them, nanotechnology-based systems and hydrogels are popular due to their ability to facilitate targeted drug delivery, reduce dosage, and increase the therapeutic efficiency. AG-based carrier systems are not only used for the sustained release of drug, but also used in the delivery of siRNA, interleukins, and stem cells for site directed drug delivery and tissue regenerating ability respectively. This review is focussed on pathogenesis and currently studied medications for IBD, AG-based drug delivery systems and their properties for the alleviation of IBD. Moreover, future challenges are also be discoursed to improve the research of AG in the field of biopharmaceuticals and drug delivery.


Assuntos
Portadores de Fármacos , Doenças Inflamatórias Intestinais , Humanos , Portadores de Fármacos/uso terapêutico , Alginatos/uso terapêutico , Alginatos/química , Sistemas de Liberação de Medicamentos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Polímeros/uso terapêutico
8.
Plants (Basel) ; 12(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36986905

RESUMO

Polyphenol has been used in treatment for some health disorders due to their diverse health promoting properties. These compounds can reduce the impacts of oxidation on the human body, prevent the organs and cell structure against deterioration and protect their functional integrity. The health promoting abilities are attributed to their high bioactivity imparting them high antioxidative, antihypertensive, immunomodulatory, antimicrobial, and antiviral activity, as well as anticancer properties. The application of polyphenols such as flavonoids, catechin, tannins, and phenolic acids in the food industry as bio-preservative substances for foods and beverages can exert a superb activity on the inhibition of oxidative stress via different types of mechanisms. In this review, the detailed classification of polyphenolic compunds and their important bioactivity with special focus on human health are addressed. Additionally, their ability to inhibit SARS-CoV-2 could be used as alternative therapy to treat COVID patients. Inclusions of polyphenolic compounds in various foods have demonstrated their ability to extend shelf life and they positive impacts on human health (antioxidative, antihypertensive, immunomodulatory, antimicrobial, anticancer). Additionally, their ability to inhibit the SARS-CoV-2 virus has been reported. Considering their natural occurrence and GRAS status they are highly recommended in food.

9.
Mar Drugs ; 20(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36547881

RESUMO

The market demand for marine-based cosmetics has shown a tremendous growth rate in the last decade. Marine resources represent a promising source of novel bioactive compounds for new cosmetic ingredient development. However, concern about sustainability also becomes an issue that should be considered in developing cosmetic ingredients. The fisheries industry (e.g., fishing, farming, and processing) generates large amounts of leftovers containing valuable substances, which are potent sources of cosmeceutical ingredients. Several bioactive substances could be extracted from the marine by-product that can be utilized as a potent ingredient to develop cosmetics products. Those bioactive substances (e.g., collagen from fish waste and chitin from crustacean waste) could be utilized as anti-photoaging, anti-wrinkle, skin barrier, and hair care products. From this perspective, this review aims to approach the potential active ingredients derived from marine by-products for cosmetics and discuss the possible activity of those active ingredients in promoting human beauty. In addition, this review also covers the prospect and challenge of using marine by-products toward the emerging concept of sustainable blue cosmetics.


Assuntos
Cosmecêuticos , Cosméticos , Envelhecimento da Pele , Dermatopatias , Animais , Humanos , Cosmecêuticos/farmacologia , Quitina
10.
Curr Pharm Des ; 28(41): 3351-3362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36411577

RESUMO

Recent research has revealed the role of metalloproteinases in a number of severe pathological illnesses, including cardiac, cartilage, neurological, and cancer-related diseases that are fatal to humans. Metalloproteinases are a subclass of endopeptidases that comprise structurally identical enzymes known as Matrix Metalloproteinases (MMPs) that are solely involved in extracellular matrix degradation and play a significant regulatory function in tissue remodeling. Improper regulation and expression of MMPs have been linked to several life-threatening pathological conditions in humans. Hence there is an ever-growing interest in various research communities to identify and report the Matrix Metalloproteinase Inhibitors (MMPIs). In spite of several chemically synthesized MMPIs being available currently, several unpleasant side effects, un-successful clinical trials have made use of synthetic MMPIs as a risky strategy. Several natural product researchers have strongly recommended and reported many natural resources like plants, microorganisms, and animals as greater resources to screen for bioactives that can function as potential natural MMPIs. Marine environment is one of the vast and promising resources that harbor diverse forms of life known to synthesize biologically active compounds. These bioactive compounds from marine organisms have been reported for their unparalleled biological effects and have profound applications in cosmeceutical, nutraceutical, and pharmaceutical research. Several research groups have reported an umpteen number of medicinally unmatched compounds from marine flora and fauna, thus driving researchers to screen marine organisms for natural MMPIs. In this review, our group has reported the potential MMPIs from marine organisms.


Assuntos
Produtos Biológicos , Inibidores de Metaloproteinases de Matriz , Animais , Humanos , Inibidores de Metaloproteinases de Matriz/farmacologia , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Organismos Aquáticos/metabolismo , Metaloproteinases da Matriz/metabolismo
11.
Beilstein J Nanotechnol ; 13: 1051-1067, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247529

RESUMO

Biomimetic materials for better bone graft substitutes are a thrust area of research among researchers and clinicians. Autografts, allografts, and synthetic grafts are often utilized to repair and regenerate bone defects. Autografts are still considered the gold-standard method/material to treat bone-related issues with satisfactory outcomes. It is important that the material used for bone tissue repair is simultaneously osteoconductive, osteoinductive, and osteogenic. To overcome this problem, researchers have tried several ways to develop different materials using chitosan-based nanocomposites of silver, copper, gold, zinc oxide, titanium oxide, carbon nanotubes, graphene oxide, and biosilica. The combination of materials helps in the expression of ideal bone formation genes of alkaline phosphatase, bone morphogenic protein, runt-related transcription factor-2, bone sialoprotein, and osteocalcin. In vitro and in vivo studies highlight the scientific findings of antibacterial activity, tissue integration, stiffness, mechanical strength, and degradation behaviour of composite materials for tissue engineering applications.

12.
Int J Biol Macromol ; 220: 1464-1479, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36116588

RESUMO

Respiratory distress syndrome and pneumothorax are the foremost causes of death as a result of the changing lifestyle and increasing air pollution. Numerous approaches have been studied for the pulmonary delivery of drugs, proteins as well as peptides using meso/nanoparticles, nanocrystals, and liposomes. These nano/microcarrier systems (NMCs) loaded with drug provide better systemic as well as local action. Furthermore, natural polysaccharide-based polymers such as chitosan (CS), alginate (AG), hyaluronic acid, dextran, and cellulose are highly used for the preparation of nanoparticles and delivery of the drug into the pulmonary tract due to their advantageous properties such as low toxicity, high hydrophobicity, supplementary mucociliary clearance, mucoadhesivity, and biological efficacy. These properties ease the delivery of drugs onto the targeted site. Herein, recent advances in the natural polymer-derived NMCs have been reviewed for their transport and mechanism of action into the bronchiolar region as well as the respiratory region. Various physicochemical properties such as surface charge, size of nanocarrier system, surface modifications, and toxicological effects of these nanocarriers in vitro and in vivo are elucidated as well. Furthermore, challenges faced for the preparation of a model NMCs for pulmonary drug delivery are also discoursed.


Assuntos
Quitosana , Nanopartículas , Alginatos , Celulose , Quitosana/química , Dextranos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Excipientes , Ácido Hialurônico , Lipossomos , Nanopartículas/química , Polímeros/química , Polissacarídeos/química
13.
Mar Drugs ; 20(7)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35877745

RESUMO

The role of NLRP3 in the tumour microenvironment is elusive. In some cancers, the activation of NLRP3 causes a worse prognosis and in some cancers, NLRP3 increases chances of survivability. However, in many cases where NLRP3 has a protumorigenic role, inhibition of NLRP3 would be a crucial step in therapy. Consequently, activation of NLRP3 would be of essence when inflammation is required. Although many ways of inhibiting and activating NLRP3 in cancers have been discussed before, not a lot of focus has been given to chitin and chitosan in this context. The availability of these marine compounds and their versatility in dealing with inflammation needs to be investigated further in relation with cancers, along with other natural extracts. In this review, the effects of NLRP3 on gastrointestinal and gynaecological cancers and the impact of different natural extracts on NLRP3s with special emphasis on chitin and chitosan is discussed. A research gap in using chitin derivatives as anti/pro-inflammatory agents in cancer treatment has been highlighted.


Assuntos
Quitosana , Neoplasias dos Genitais Femininos , Anti-Inflamatórios , Quitina/farmacologia , Quitosana/farmacologia , Feminino , Neoplasias dos Genitais Femininos/tratamento farmacológico , Humanos , Inflamassomos , Inflamação , Proteína 3 que Contém Domínio de Pirina da Família NLR , Microambiente Tumoral
14.
Int J Biol Macromol ; 212: 283-293, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35609839

RESUMO

The study aims to extract and purify chitosan (CS) from the exoskeleton of crab (C. natator) and develop ibuprofen (IBU) encapsulated CS nanoparticles (IBU-CSNPs). Analysis of purified CS revealed characteristic functional and crystallinity peaks. Moreover, morphological analysis of prepared IBU-CSNPs showed uniform spherical shape with a size range of 40-100 nm whereas encapsulation efficiency (EE%) and loading capacity (LC%) were estimated to be 68.94 ± 1.61% and 28 ± 1.18% respectively. Further, in vitro release profile of IBU from IBU-CSNPs was observed to be in biphasic form with initial release up to 15 h followed by the sustained release in different test conditions. Further, the effects of purified CS on the viability of RAW264.7 cells exhibited no toxic effects in higher concentrations. Furthermore, fluorescein isothiocyanate (FITC) conjugated nanoparticles (FITC-IBU-CSNPs) were investigated on in vivo model of adult zebrafish for time-dependent circulation and accumulation of the drug through the nano-carrier system. It was observed that the drug diffusion from the nanoparticles was in a sustained manner throughout the gastrointestinal region which resulted in suppression of inflammation. Overall, this study provides an effective and facile process for preparing a crab CS-based nano-carrier system used for the delivery of IBU in vivo which may help in the curing of prolonged chronic inflammatory diseases. Moreover, it may also help to reduce adverse effects of these drugs in the gastrointestinal tract such as ulcers and bleeding.


Assuntos
Braquiúros , Quitosana , Exoesqueleto Energizado , Nanopartículas , Animais , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Excipientes , Fluoresceína-5-Isotiocianato , Ibuprofeno/farmacologia , Tamanho da Partícula , Água , Peixe-Zebra
15.
Curr Pharm Des ; 28(41): 3325-3336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35388747

RESUMO

Marine microorganisms represent virtually unlimited sources of novel biological compounds and can survive extreme conditions. Cellulases, a group of enzymes that are able to degrade cellulosic materials, are in high demand in various industrial and biotechnological applications, such as in the medical and pharmaceutical industries, food, fuel, agriculture, and single-cell protein, and as probiotics in aquaculture. The cellulosic biopolymer is a renewable resource and is a linearly arranged polysaccharide of glucose, with repeating units of disaccharide connected via ß-1,4-glycosidic bonds, which are broken down by cellulase. A great deal of biodiversity resides in the ocean, and marine systems produce a wide range of distinct, new bioactive compounds that remain available but dormant for many years. The marine environment is filled with biomass from known and unknown vertebrates and invertebrate microorganisms, with much potential for use in medicine and biotechnology. Hence, complex polysaccharides derived from marine sources are a rich resource of microorganisms equipped with enzymes for polysaccharides degradation. Marine cellulases' extracts from the isolates are tested for their functional role in degrading seaweed and modifying wastes to low molecular fragments. They purify and renew environments by eliminating possible feedstocks of pollution. This review aims to examine the various types of marine cellulase producers and assess the ability of these microorganisms to produce these enzymes and their subsequent biotechnological applications.


Assuntos
Celulase , Celulases , Proteínas de Bactérias/química , Biomassa , Biotecnologia/métodos , Celulase/metabolismo , Celulases/metabolismo , Microbiologia Industrial/métodos , Polissacarídeos/química
16.
Mar Drugs ; 19(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34564142

RESUMO

Developing peptide-based drugs are very promising to address many of the lifestyle mediated diseases which are prevalent in a major portion of the global population. As an alternative to synthetic peptide-based drugs, derived peptides from natural sources have gained a greater attention in the last two decades. Aquatic organisms including plants, fish and shellfish are known as a rich reservoir of parent protein molecules which can offer novel sequences of amino acids in peptides, having unique bio-functional properties upon hydrolyzing with proteases from different sources. However, rather than exploiting fish and shellfish stocks which are already under pressure due to overexploitation, the processing discards, regarded as secondary raw material, could be a potential choice for peptide based therapeutic development strategies. In this connection, we have attempted to review the scientific reports in this area of research that deal with some of the well-established bioactive properties, such as antihypertensive, anti-oxidative, anti-coagulative, antibacterial and anticarcinogenic properties, with reference to the type of enzymes, substrate used, degree of particular bio-functionality, mechanism, and wherever possible, the active amino acid sequences in peptides. Many of the studies have been conducted on hydrolysate (crude mixture of peptides) enriched with low molecular bioactive peptides. In vitro and in vivo experiments on the potency of bioactive peptides to modulate the human physiological functions beneficially have demonstrated that these peptides can be used in the prevention and treatment of non-communicable lifestyle mediated diseases. The information synthesized under this review could serve as a point of reference to drive further research on and development of functionally active therapeutic natural peptides. Availability of such scientific information is expected to open up new zones of investigation for adding value to underutilized secondary raw materials, which in turn paves the way for sustainability in fish processing. However, there are significant challenges ahead in exploring the fish waste as a source of bioactive peptides, as it demands more studies on mechanisms and structure-function relationship understanding as well as clearance from regulatory and statutory bodies before reaching the end user in the form of supplement or therapeutics.


Assuntos
Proteínas de Peixes , Peixes , Indústria de Processamento de Alimentos , Peptídeos , Resíduos , Animais , Proteínas de Peixes/química , Proteínas de Peixes/farmacologia , Gelatina/farmacologia , Humanos , Hidrólise , Peptídeos/química , Peptídeos/farmacologia
17.
Mar Drugs ; 19(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34210079

RESUMO

Fish muscle, which accounts for 15%-25% of the total protein in fish, is a desirable protein source. Their hydrolysate is in high demand nutritionally as a functional food and thus has high potential added value. The hydrolysate contains physiologically active amino acids and various essential nutrients, the contents of which depend on the source of protein, protease, hydrolysis method, hydrolysis conditions, and degree of hydrolysis. Therefore, it can be utilized for various industrial applications including use in nutraceuticals and pharmaceuticals to help improve the health of humans. This review discusses muscle protein hydrolysates generated from the muscles of various fish species, as well as their amino acid composition, and highlights their functional properties and bioactivity. In addition, the role of the amino acid profile in regulating the biological and physiological activities, nutrition, and bitter taste of hydrolysates is discussed.


Assuntos
Aminoácidos/química , Peixes , Hidrolisados de Proteína/química , Animais , Músculos/química
18.
Compr Rev Food Sci Food Saf ; 20(4): 4182-4210, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34146459

RESUMO

Fish and fishery products (FFP) are highly perishable due to their high nutritional value and moisture content. The spoilage is mainly caused by microorganisms and chemical reactions, especially lipid oxidation, leading to losses in quality and market value. Microbiological and lipid deteriorations of fishery-derived products directly lower their nutritive value and pose the risk of toxicity for human health. Increasing demand for safe FFP brings about the preservation using additives from natural origins without chemical additives due to their safety and strict regulation. Antimicrobials and antioxidants from natural sources have exhibited an excellent control over the growth of microorganisms causing fish spoilage via different mechanisms. They also play a major role in retarding lipid oxidation by acting at various stages of oxidation. Antimicrobials and antioxidants from natural sources are usually regarded as safe with no detrimental effects on the quality attributes of FFP. This review provides recent literature on the different antioxidant and antimicrobial agents from natural sources, focusing on microbial and oxidative spoilage mechanisms, their inhibition system, and their applications to retard spoilage, maintain safety, and extend the shelf life of FFP. Their applications and benefits have been revisited.


Assuntos
Anti-Infecciosos , Antioxidantes , Animais , Pesqueiros , Peixes , Conservação de Alimentos , Humanos
19.
Mar Drugs ; 19(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809936

RESUMO

The skin health benefits of seaweeds have been known since time immemorial. They are known as potential renewable sources of bioactive metabolites that have unique structural and functional features compared to their terrestrial counterparts. In addition, to the consciousness of green, eco-friendly, and natural skincare and cosmetics products, their extracts and bioactive compounds such as fucoidan, laminarin, carrageenan, fucoxanthin, and mycosporine like amino acids (MAAs) have proven useful in the skincare and cosmetic industries. These bioactive compounds have shown potential anti-photoaging properties. Furthermore, some of these bioactive compounds have been clinically tested and currently available in the market. In this contribution, the recent studies on anti-photoaging properties of extracts and bioactive compounds derived from seaweeds were described and discussed.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Cosmecêuticos/farmacologia , Alga Marinha/metabolismo , Envelhecimento da Pele/efeitos dos fármacos , Higiene da Pele , Pele/efeitos dos fármacos , Protetores Solares/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Cosmecêuticos/isolamento & purificação , Humanos , Mediadores da Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Pele/metabolismo , Pele/patologia , Pele/efeitos da radiação , Protetores Solares/isolamento & purificação
20.
Curr Pharm Des ; 25(11): 1200-1209, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31465280

RESUMO

BACKGROUND: Utilization of macroalgae has gained much attention in the field of pharmaceuticals, nutraceuticals, food and bioenergy. Macroalgae has been widely consumed in Asian countries as food from ancient days and proved that it has potential bioactive compounds which are responsible for its nutritional properties. Macroalgae consists of a diverse range of bioactive compounds including proteins, lipids, pigments, polysaccharides, etc. Polysaccharides from macroalgae have been utilized in food industries as gelling agents and drug excipients in the pharmaceutical industries owing to their biocompatibility and gel forming properties. Exploration of macroalgae derived sulfated polysaccharides in biomedical applications is increasing recently. METHODS: In the current review, we have provided information of three different sulfated polysaccharides such as carrageenan, fucoidan and ulvan and their isolation procedure (enzymatic precipitation, microwave assisted method, and enzymatic hydrolysis method), structural details, and their biomedical applications exclusively for bone tissue repair and regeneration. RESULTS: From the scientific results on sulfated polysaccharides from macroalgae, we conclude that sulfated polysaccharides have exceptional properties in terms of hydrogel-forming ability, scaffold formation, and mimicking the extracellular matrix, increasing alkaline phosphatase activity, enhancement of biomineralization ability and stem cell differentiation for bone tissue regeneration. CONCLUSION: Overall, sulfated polysaccharides from macroalgae may be promising biomaterials in bone tissue repair and regeneration.


Assuntos
Regeneração Óssea , Polissacarídeos/farmacologia , Alga Marinha/química , Sulfatos/química , Ásia , Osso e Ossos , Carragenina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...