Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38397753

RESUMO

Butein is a flavonoid found in many plants, including dahlia, butea, and coreopsis, and has both antioxidant and sirtuin-activating activities. In light of the postulated role of free radicals in aging, we examined the effects of butein on aging and on genetic or nutritional models of age-related diseases in Caenorhabditis elegans. Butein showed radical scavenging activity and increased resistance to oxidative stress in Caenorhabditis elegans. The mean lifespan of Caenorhabditis elegans was significantly increased by butein, from 22.7 days in the untreated control to 25.0 days in the butein-treated group. However, the lifespan-extending effect of butein was accompanied by reduced production of progeny as a trade-off. Moreover, the age-related decline in motility was delayed by butein supplementation. Genetic analysis showed that the lifespan-extending effect of butein required the autophagic protein BEC-1 and the transcription factor DAF-16 to regulate stress response and aging. At the genetic level, expression of the DAF-16 downstream target genes hsp-16.2 and sod-3 was induced in butein-treated worms. Butein additionally exhibited a preventive effect in models of age-related diseases. In an Alzheimer's disease model, butein treatment significantly delayed the paralysis caused by accumulation of amyloid-beta in muscle, which requires SKN-1, not DAF-16. In a high-glucose-diet model of diabetes mellitus, butein markedly improved survival, requiring both SKN-1 and DAF-16. In a Parkinson's disease model, dopaminergic neurodegeneration was completely inhibited by butein supplementation and the accumulation of α-synuclein was significantly reduced. These findings suggest the use of butein as a novel nutraceutical compound for aging and age-related diseases.

2.
Molecules ; 26(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429877

RESUMO

For rechargeable metal-air batteries, which are a promising energy storage device for renewable and sustainable energy technologies, the development of cost-effective electrocatalysts with effective bifunctional activity for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) has been a challenging task. To realize highly effective ORR and OER electrocatalysts, we present a hybrid catalyst, Co3O4-infiltrated La0.5Sr0.5MnO3-δ (LSM@Co3O4), synthesized using an electrospray and infiltration technique. This study expands the scope of the infiltration technique by depositing ~18 nm nanoparticles on unprecedented ~70 nm nano-scaffolds. The hybrid LSM@Co3O4 catalyst exhibits high catalytic activities for both ORR and OER (~7 times, ~1.5 times, and ~1.6 times higher than LSM, Co3O4, and IrO2, respectively) in terms of onset potential and limiting current density. Moreover, with the LSM@Co3O4, the number of electrons transferred reaches four, indicating that the catalyst is effective in the reduction reaction of O2 via a direct four-electron pathway. The study demonstrates that hybrid catalysts are a promising approach for oxygen electrocatalysts for renewable and sustainable energy devices.


Assuntos
Fontes de Energia Elétrica , Técnicas Eletroquímicas , Metais/química , Oxigênio/química , Catálise
3.
Nat Commun ; 10(1): 697, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30741942

RESUMO

Exsolution has been intensively studied in the fields of energy conversion and storage as a method for the preparation of catalytically active and durable metal nanoparticles. Under typical conditions, however, only a limited number of nanoparticles can be exsolved from the host oxides. Herein, we report the preparation of catalytic nanoparticles by selective exsolution through topotactic ion exchange, where deposited Fe guest cations can be exchanged with Co host cations in PrBaMn1.7Co0.3O5+δ. Interestingly, this phenomenon spontaneously yields the host PrBaMn1.7Fe0.3O5+δ, liberating all the Co cations from the host owing to the favorable incorporation energy of Fe into the lattice of the parent host (ΔEincorporation = -0.41 eV) and the cation exchange energy (ΔEexchange = -0.34 eV). Remarkably, the increase in the number of exsolved nanoparticles leads to their improved catalytic activity as a solid oxide fuel cell electrode and in the dry reforming of methane.

4.
Sci Rep ; 8(1): 17149, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30464228

RESUMO

Solid oxide cells (SOC) with a symmetrical configuration have been focused due to the practical benefits of such configurations, such as minimized compatibility issues, a simple fabrication process and reduced cost compared to SOCs with the asymmetrical configuration. However, the performance of SOCs using a single type of electrode material (symmetrical configuration) is lower than the performance of those using the dissimilar electrode materials (asymmetrical configuration). Therefore, to achieve a high-performance cell, we design a 'self-transforming cell' with the asymmetric configuration using only materials of the single type, one based on atmospheric adaptive materials. Atmospheric-adaptive perovskite Pr0.5Ba0.5Mn0.85Co0.15O3-δ (PBMCo) was used for the so-called self-transforming cell electrodes, which changed to layered perovskite and metal in the fuel atmosphere and retained its original structure in the air atmosphere. In fuel cell mods, the self-transforming cell shows excellent electrochemical performance of 1.10 W cm-2 at 800 °C and good stability for 100 h without any catalyst. In electrolysis mode, the moderate current densities of -0.42 A cm-2 for 3 vol.% H2O and -0.62 A cm-2 for 10 vol.% H2O, respectively, were observed at a cell voltage of 1.3 V at 800 °C. In the reversible cycling test, the transforming cell maintains the constant voltages for 30 h at +/- 0.2 A cm-2 under 10 vol. % H2O.

5.
Small ; 14(48): e1802767, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30226302

RESUMO

Fabricating perovskite oxide/carbon material composite catalysts is a widely accepted strategy to enhance oxygen reduction reaction/oxygen evolution reaction (ORR and OER) catalytic activities. Herein, synthesized, porous, perovskite-type Sm0.5 Sr0.5 CoO3-δ hollow nanofibers (SSC-HF) are hybridized with cross-linked, 3D, N-doped graphene (3DNG). This rationally designed hybrid catalyst, SSC-HF-3DNG (SSC-HG), exhibits a remarkable enhancement in ORR/OER activity in alkaline media. The synergistic effects between SSC and 3DNG during their ORR and OER processes are firstly revealed by density functional theory calculations. It suggests that electron transport from 3DNG to O2 and SSC increases the activity of electrocatalytic reactions (ORR and OER) by activating O2 , increasing the covalent bonding of lattice oxygen. This electron transfer-accelerated catalysis behavior in SSC-HG will provide design guidelines for composites of perovskite and carbon with bifunctional catalysts.

6.
ACS Nano ; 11(11): 11594-11601, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29049884

RESUMO

Of the various catalysts that have been developed to date for high performance and low cost, perovskite oxides have attracted attention due to their inherent catalytic activity as well as structural flexibility. In particular, high amounts of Pr substitution of the cation ordered perovskite oxide originating from the state-of-the-art Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) electrode could be a good electrode or catalyst because of its high oxygen kinetics, electrical conductivity, oxygen capacity, and structural stability. However, even though it has many favorable intrinsic properties, the conventional high-temperature treatment for perovskite synthesis, such as solid-state reaction and combustion process, leads to the particle size increase which gives rise to the decrease in surface area and the mass activity. Therefore, we prepared mesoporous nanofibers of various cation-ordered PrBa0.5Sr0.5Co2-xFexO5+δ (x = 0, 0.5, 1, 1.5, and 2) perovskites via electrospinning. The well-controlled B-site metal ratio and large surface area (∼20 m2 g-1) of mesoporous nanofiber result in high performance of the oxygen reduction reaction and oxygen evolution reaction and stability in zinc-air battery.

7.
Adv Sci (Weinh) ; 3(1): 1500205, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-27722079

RESUMO

An activated carbon nanofiber (CNF) is prepared with incorporated Fe-N-doped graphene nanoplatelets (Fe@NGnPs), via a novel and simple synthesis approach. The activated CNF-Fe@NGnP catalysts exhibit substantially improved activity for the oxygen reduction reaction compared to those of commercial carbon blacks and Pt/carbon catalysts.

8.
ChemSusChem ; 8(18): 3153-8, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26227300

RESUMO

This study focuses on reducing the cathode polarization resistance through the use of mixed ionic electronic conductors and the optimization of cathode microstructure to increase the number of electrochemically active sites. Among the available mixed ionic electronic conductors (MIECs), the layered perovskite GdBa0.5 Sr0.5 CoFeO5+δ (GBSCF) was chosen as a cathode material for intermediate temperature solid oxide fuel cells owing to its excellent electrochemical performance and structural stability. The optimized microstructure of a GBSCF-yttria-stabilized zirconia (YSZ) composite cathode was prepared through an infiltration method with careful control of the sintering temperature to achieve high surface area, adequate porosity, and well-organized connection between nanosized particles to transfer electrons. A symmetric cell shows outstanding results, with the cathode exhibiting an area-specific resistance of 0.006â€…Ω cm(2) at 700 °C. The maximum power density of a single cell using Ce-Pd anode with a thickness of ∼80 µm electrolyte was ∼0.6 W cm(-2) at 700 °C.

9.
J Basic Microbiol ; 48(6): 473-9, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18792055

RESUMO

An organic solvent-tolerant bacterium, designated as Pseudomonas sp. BCNU 171, was isolated from industrial wastewater in Korea, on the basis of its ability to survive in the presence of benzene, toluene, propylbenzene and xylenes. Its tolerance limits were 8 mM in phenol, 20 mM in benzene and 60 M in toluene. The log P value of phenol was approximately 1.5, which indicates that Pseudomonas sp. BCNU 171 exhibits the highest tolerance to organic solvents. Pseudomonas sp. BCNU 171, a relative of P. putida, P. mosselii and P. moteillii based on phylogenetic analyses using 16S rRNA sequences, was designated as a new sp. that is tolerant to a wide spectrum of organic solvents, especially xylene isomers. These findings may facilitate the understanding of organic solvent tolerance in bacterial cells.


Assuntos
Derivados de Benzeno/metabolismo , Microbiologia Industrial , Pseudomonas/fisiologia , Biodegradação Ambiental , Coreia (Geográfico) , Pseudomonas/efeitos dos fármacos , Pseudomonas/genética , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S/genética , Solventes/farmacologia , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...