Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 89(12): 8985-9000, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38861548

RESUMO

Ketyl radicals are synthetically versatile reactive species, but their applications have been hampered by harsh generation conditions employing highly reducing metals. Recently, the pyridine-boryl radical received wide attention as a promising organic reductant because of its mildness as well as convenience in handling. While probing the utility of the pyridine-boryl radical, our group observed facile pinacol coupling reactivity that had not been known at that time. This serendipitous finding was successfully rendered into a practical synthesis of tetraaryl-1,2-diols in up to 99% yield within 1 h. Subsequently, upon examinations of various reaction manifolds, a diastereoselective ketyl-olefin cyclization was accomplished to produce cycloalkanols such as trans-2-alkyl-1-indanols. Compared to the previous methods, the stereocontrolling ability was considerably enhanced by taking advantage of the structurally modifiable boryl group that would be present near the bond-forming site. In this full account, our synthetic efforts with the O-boryl ketyl radicals are disclosed in detail, covering the discovery, optimization, scope expansion, and mechanistic analysis, including density functional theory (DFT) calculations.

2.
Angew Chem Int Ed Engl ; 60(51): 26813-26821, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34636478

RESUMO

Herein, we report an efficient strategy for the remote C-H pyridylation of hydroxamates with excellent ortho-selectivity by designing a new class of photon-absorbing O-aryl oxime pyridinium salts generated in situ from the corresponding pyridines and hydroxamates. When irradiated by visible light, the photoexcitation of oxime pyridinium intermediates generates iminyl radicals via the photolytic N-O bond cleavage, which does not require an external photocatalyst. The efficiency of light absorption and N-O bond cleavage of the oxime pyridinium salts can be modulated through the electronic effect of substitution on the O-aryl ring. The resultant iminyl radicals enable the installation of pyridyl rings at the γ-CN position, which yields synthetically valuable C2-substituted pyridyl derivatives. This novel synthetic approach provides significant advantages in terms of both efficiency and simplicity and exhibits broad functional group tolerance in complex settings under mild and metal-free conditions.

3.
Chem Commun (Camb) ; 57(11): 1360-1363, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33432934

RESUMO

A convenient, pyridine-boryl radical-mediated pinacol coupling of diaryl ketones is developed. In contrast to the conventional pinacol coupling that requires sensitive reducing metal, the current method employs a stable diboron reagent and pyridine Lewis base catalyst for the generation of a ketyl radical. The newly developed process is operationally simple, and the desired diols are produced with excellent efficiency in up to 99% yield within 1 hour. The superior reactivity of diaryl ketone was observed over monoaryl carbonyl compounds and analyzed by DFT calculations, which suggests the necessity of both aromatic rings for the maximum stabilization of the transition states.

4.
Angew Chem Int Ed Engl ; 59(32): 13379-13384, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32368820

RESUMO

A general strategy for visible-light-enabled site-selective trifluoromethylative pyridylation of unactivated alkenes has been developed using pyridines and triflic anhydride (Tf2 O). Intriguingly, the N-triflylpyridinium salts, generated in situ from pyridines and Tf2 O, serve as effective modular bifunctional reagents to install both CF3 and pyridyl groups to various olefins while controlling C4-selectivity in radical addition to the pyridine core. This synthetic route exhibited broad substrate scope under metal-free and mild photocatalytic conditions, granting efficient access to valuable C4-alkylated pyridines and quinolines without requiring prefunctionalization of the reaction site.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...