RESUMO
This study investigated the effects of supplemental nucleotides, autolyzed yeast (Saccharomyces cerevisiae), and sodium butyrate in diets for nursery pigs on growth performance, diarrhea incidence, blood profile, intestinal morphology, mRNA expression of nutrient transporters, inflammatory markers, antioxidant profile, and tight junction proteins in the small intestine. One hundred eighty 21-day-old pigs (5.17 ± 0.57 kg) were assigned in a randomized block design to 1 of 4 dietary treatments: (1) CON: control, basal diet, (2) NUC: CON + nucleotides, (3) YSC: CON + lysed yeast S. cerevisiae, (4) ASB: CON + acidifier sodium butyrate. Pigs were fed for 24 days, phase 1 (21-32 days) and 2 (32-45 days). During phase 1, YSC and ASB improved average daily gain (ADG) and feed conversion (FC) compared with CON. At the overall period, ASB improved ADG and YSC improved FC compared with CON. The NUC diet did not affect growth performance. The ASB increased ileal villus height compared to CON. The YSC and ASB reduced the number of Peyer's patches in the ileum compared with CON. The YSC increased mRNA expression of nutrient transporters (SMCT2, MCT1, and PepT1), tight junction proteins (OCL and ZO-1), antioxidants (GPX), and IL1-ß in the jejunum compared with CON. The ASB increased mRNA expression of nutrient transporters (SGLT1 and MCT1), tight junction proteins (OCL and ZO-1), and antioxidants (GPX and SOD) compared with CON. In conclusion, autolyzed yeast and sodium butyrate promoted growth performance by improving the integrity of the intestinal barrier, the mRNA expression of nutrient transporters, and antioxidant enzymes in the jejunum of nursery pigs whereas supplementation of nucleotides did not show such effects.
Assuntos
Ração Animal , Ácido Butírico , Suplementos Nutricionais , Saccharomyces cerevisiae , Desmame , Animais , Suínos/crescimento & desenvolvimento , Ácido Butírico/farmacologia , Ácido Butírico/administração & dosagem , Saccharomyces cerevisiae/metabolismo , Ração Animal/análise , Proteínas de Junções Íntimas/metabolismo , Proteínas de Junções Íntimas/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Antioxidantes/metabolismo , Intestinos/efeitos dos fármacosRESUMO
This review aimed to clarify the mechanisms through which exogenous enzymes (carbohydrases and phytase) influence intestinal health, as well as their effects on the nutrients and energy matrix in diets fed to poultry and pigs reared under sanitary challenging conditions. Enzyme supplementation can positively affect intestinal microbiota, immune system, and enhance antioxidant status. Although enzymes have been shown to save energy and nutrients, their responses under sanitary challenging conditions are poorly documented. Immune system activation alters nutrient partitioning, which can affect the matrix values for exogenous enzymes on commercial farms. Notably, the carbohydrases and phytase supplementation under sanitary challenging conditions align with energy and nutritional valorization matrices. Studies conducted under commercial conditions have shown that matrices containing carbohydrases and phytase can maintain growth performance and health in poultry and pigs. However, these studies have predominantly focused on assessing a single level of reduction in energy and/or available phosphorus and total calcium, limiting our ability to quantify potential energy and nutrient savings in the diet. Future research should delve deeper into determining the extent of energy and nutrient savings and understanding the effects of alone or blended enzymes supplementation to achieve more specific insights.
RESUMO
Currently, five crystalline essential amino acids (Lys, Met, Thr, Trp, and Val) are generally used, allowing formulation of low-crude-protein (CP) diets. Moreover, Ile may also be used depending on its economic value and the specific feeding program. Experimentally, it has been shown that further reduced CP levels can be achieved by supplemental His, Leu, and Phe to the diets. However, decreasing the dietary CP level while maintaining optimal ratios of amino acids has shown contradictory effects on pigs' growth performance. Due to the divergence in the literature and the importance for practical formulation strategies in the swine industry, a literature review and a meta-analysis were performed to estimate the minimum CP level that would not compromise pig performance. Based on the present review, there is a minimum CP level after which the growth performance of pigs can be compromised, even though diets are balanced for essential amino acids. Considering average daily gain and gain to feed, respectively, these levels were estimated to be 18.4% CP (95% confidence interval [CI]: 16.3 to 18.4) and 18.3% CP (95% CI: 17.4 to 19.2) for nursery, 16.1% CP (95% CI: 16.0 to 16.2) and 16.3% CP (95% CI: 14.5 to 18.0) for growing, and 11.6% CP (95% CI: 10.8 to 12.3) and 11.4% CP (95% CI: 10.3 to 12.5) for finishing pigs.
RESUMO
Background Spermatogonial stem cells (SSCs) are important for the production of interspecies germ line chimeras. The interspecies germ cell transfer technique has been suggested as a way to conserve endangered birds. Our objective was to develop a technique for restoring endangered birds by developing interspecies germ line chimeras between pheasant (Phasianus colchicus) and chicken (Gallus gallus) with SSCs. Results SSCs were isolated from the surgically removed testis of a pheasant. Growth conditions for pheasant SSCs were established by co-culturing STO (SIM mouse embryo-derived thioguanine and ouabain resistant) cells and pheasant SSCs. The colony-forming cells divided and proliferated stably to yield an established SSC line. Pheasant SSCs showed strong reactivity for GDNF family receptor alpha1 (GFRa1) marker. Finally, production of germ line chimeras was attempted by transferring pheasant SSCs into recipient embryos. Although final embryo survival was 5.6% (20/354), the initial survival rate was 88% (312/354). To measure the percent transfer of donor SSC to gonads, the pheasant SSCs were labeled with PKH 26 fluorescent dye. We observed 30% donor cells and 9.48% c-kit/CD117-positive cells in the gonads of recipient chickens. Donor SSCs were thus stably engrafted in the recipient gonads. Conclusions This study showed that SSCs can be used as a tool for the conservation of endangered birds and the production of germ line chimeras. Our findings yield insights into how we may use the pheasant spermatogonial stem cell line for efficient production of interspecies germ line chimeras and ultimately, to the restoration of endangered birds.