Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(6): 2614-2622, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30646680

RESUMO

Outer-sphere electron transfer from styrene, thioanisole, and toluene derivatives to a triflic acid (HOTf)-bound nonheme Mn(IV)-oxo complex, [(N4Py)MnIV(O)]2+-(HOTf)2 (N4Py = N, N-bis(2-pyridylmethyl)- N-bis(2-pyridyl)methylamine), has been shown to be the rate-determining step of different types of redox reactions such as epoxidation, sulfoxidation, and hydroxylation of styrene, thioanisole, and toluene derivatives, respectively, by [(N4Py)MnIV(O)]2+-(HOTf)2. The rate constants of HOTf-promoted epoxidation of all styrene derivatives with [(N4Py)MnIV(O)]2+ and electron transfer from electron donors to [(N4Py)MnV(O)]2+ exhibit a remarkably unified correlation with the driving force of outer-sphere electron transfer in light of the Marcus theory of electron transfer. The same electron-transfer driving force dependence is observed in the oxygen atom transfer from [(N4Py)MnIV(O)]2+-(HOTf)2 to thioanisole derivatives as well as in the hydrogen atom transfer from toluene derivatives to [(N4Py)MnIV(O)]2+-(HOTf)2. Thus, mechanisms of oxygen atom transfer (epoxidation and sulfoxidation) reactions of styrene and thioanisole derivatives and hydrogen atom transfer (hydroxylation) reactions of toluene derivatives by [(N4Py)MnIV(O)]2+-(HOTf)2 have been unified for the first time as the same reaction pathway via outer-sphere electron transfer, followed by the fast bond-forming step, which exhibits the singly unified electron-transfer driving force dependence of the rate constants as outer-sphere electron-transfer reactions. In the case of the epoxidation of cis-stilbene by [(N4Py)MnIV(O)]2+-(HOTf)2, the isomerization of cis-stilbene radical cation to trans-stilbene radical cation occurs after outer-sphere electron transfer from cis-stilbene to [(N4Py)MnIV(O)]2+-(HOTf)2 to yield trans-stilbene oxide selectively, which is also taken as evidence for the occurrence of electron transfer in the acid-catalyzed epoxidation.

2.
Biochemistry ; 56(35): 4676-4688, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28786671

RESUMO

At least nine neurodegenerative diseases that are caused by the aggregation induced by long tracts of glutamine sequences have been identified. One such polyglutamine-containing protein is huntingtin, which is the primary factor responsible for Huntington's disease. Sedimentation velocity with fluorescence detection is applied to perform a comparative study of the aggregation of the huntingtin exon 1 protein fragment upon transgenic expression in Drosophila melanogaster and Caenorhabditis elegans. This approach allows the detection of aggregation in complex mixtures under physiologically relevant conditions. Complementary methods used to support this biophysical approach included fluorescence microscopy and semidenaturing detergent agarose gel electrophoresis, as a point of comparison with earlier studies. New analysis tools developed for the analytical ultracentrifuge have made it possible to readily identify a wide range of aggregating species, including the monomer, a set of intermediate aggregates, and insoluble inclusion bodies. Differences in aggregation in the two animal model systems are noted, possibly because of differences in levels of expression of glutamine-rich sequences. An increased level of aggregation is shown to correlate with increased toxicity for both animal models. Co-expression of the human Hsp70 in D. melanogaster showed some mitigation of aggregation and toxicity, correlating best with inclusion body formation. The comparative study emphasizes the value of the analytical ultracentrifuge equipped with fluorescence detection as a useful and rigorous tool for in situ aggregation analysis to assess commonalities in aggregation across animal model systems.


Assuntos
Caenorhabditis elegans/metabolismo , Drosophila melanogaster/metabolismo , Proteína Huntingtina/química , Animais , Western Blotting , Proteínas de Drosophila , Eletroforese em Gel Bidimensional/métodos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Larva/fisiologia , Mutação , Conformação Proteica , Ultracentrifugação
3.
J Am Chem Soc ; 138(33): 10654-63, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27462828

RESUMO

We report the oxidation of cyclic olefins, such as cyclohexene, cyclohexene-d10, and cyclooctene, by mononuclear nonheme manganese(IV)-oxo (Mn(IV)O) and triflic acid (HOTf)-bound Mn(IV)O complexes. In the oxidation of cyclohexene, the Mn(IV)O complexes prefer the C-H bond activation to the C═C double bond epoxidation, whereas the C═C double bond epoxidation becomes a preferred reaction pathway in the cyclohexene oxidation by HOTf-bound Mn(IV)O complexes. In contrast, the oxidation of cyclohexene-d10 and cyclooctene by the Mn(IV)O complexes occurs predominantly via the C═C double bond epoxidation. This conclusion is drawn from the product analysis and kinetic studies of the olefin oxidation reactions, such as the epoxide versus allylic oxidation products, the formation of Mn(II) versus Mn(III) products, and the kinetic analyses. Overall, the experimental results suggest that the energy barrier of the C═C double bond epoxidation is very close to that of the allylic C-H bond activation in the oxidation of cyclic olefins by high-valent metal-oxo complexes. Thus, the preference of the reaction pathways is subject to changes upon small manipulation of the reaction environments, such as the supporting ligands and metal ions in metal-oxo species, the presence of HOTf (i.e., HOTf-bound Mn(IV)O species), and the allylic C-H(D) bond dissociation energies of olefins. This is confirmed by DFT calculations in the oxidation of cyclohexene and cyclooctene, which show multiple pathways with similar rate-limiting energy barriers and depending on the allylic C-H bond dissociation energies. In addition, the possibility of excited state reactivity in the current system is confirmed for epoxidation reactions.

4.
Angew Chem Int Ed Engl ; 55(26): 7450-4, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27191357

RESUMO

Hydroxylation of mesitylene by a nonheme manganese(IV)-oxo complex, [(N4Py)Mn(IV) (O)](2+) (1), proceeds via one-step hydrogen-atom transfer (HAT) with a large deuterium kinetic isotope effect (KIE) of 3.2(3) at 293 K. In contrast, the same reaction with a triflic acid-bound manganese(IV)-oxo complex, [(N4Py)Mn(IV) (O)](2+) -(HOTf)2 (2), proceeds via electron transfer (ET) with no KIE at 293 K. Interestingly, when the reaction temperature is lowered to less than 263 K in the reaction of 2, however, the mechanism changes again from ET to HAT with a large KIE of 2.9(3). Such a switchover of the reaction mechanism from ET to HAT is shown to occur by changing only temperature in the boundary region between ET and HAT pathways when the driving force of ET from toluene derivatives to 2 is around -0.5 eV. The present results provide a valuable and general guide to predict a switchover of the reaction mechanism from ET to the others, including HAT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...