Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 15(1): 1002-1015, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33410664

RESUMO

Structural DNA nanotechnology plays an ever-increasing role in advanced biomolecular applications. Here, we present a computational method to analyze structured DNA assemblies rapidly at near-atomic resolution. Both high computational efficiency and molecular-level accuracy are achieved by developing a multiscale analysis framework. The sequence-dependent relative geometry and mechanical properties of DNA motifs are characterized by the all-atom molecular dynamics simulation and incorporated into the structural finite element model successfully without significant loss of atomic information. The proposed method can predict the three-dimensional shape, equilibrium dynamic properties, and mechanical rigidities of monomeric to hierarchically assembled DNA structures at near-atomic resolution without adjusting any model parameters. The calculation takes less than only 15 min for most origami-scale DNA nanostructures consisting of 7000-8000 base-pairs. Hence, it is expected to be highly utilized in an iterative design-analysis-revision process for structured DNA assemblies.


Assuntos
DNA , Nanoestruturas , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Nanotecnologia , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...