Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10953, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740958

RESUMO

Oxide semiconductors have gained significant attention in electronic device industry due to their high potential for emerging thin-film transistor (TFT) applications. However, electrical contact properties such as specific contact resistivity (ρC) and width-normalized contact resistance (RCW) are significantly inferior in oxide TFTs compared to conventional silicon metal oxide semiconductor field-effect transistors. In this study, a multi-stack interlayer (IL) consisting of titanium nitride (TiN) and indium-gallium-tin-oxide (IGTO) is inserted between source/drain electrodes and amorphous indium-gallium-zinc-oxide (IGZO). The TiN is introduced to increase conductivity of the underlying layer, while IGTO acts as an n+-layer. Our findings reveal IGTO thickness (tIGTO)-dependent electrical contact properties of IGZO TFT, where ρC and RCW decrease as tIGTO increases to 8 nm. However, at tIGTO > 8 nm, they increase mainly due to IGTO crystallization-induced contact interface aggravation. Consequently, the IGZO TFTs with a TiN/IGTO (3/8 nm) IL reveal the lowest ρC and RCW of 9.0 × 10-6 Ω·cm2 and 0.7 Ω·cm, significantly lower than 8.0 × 10-4 Ω·cm2 and 6.9 Ω·cm in the TFTs without the IL, respectively. This improved electrical contact properties increases field-effect mobility from 39.9 to 45.0 cm2/Vs. This study demonstrates the effectiveness of this multi-stack IL approach in oxide TFTs.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38662878

RESUMO

Drain-induced barrier lowering (DIBL) is one of the most critical obstacles degrading the reliability of integrated circuits based on miniaturized transistors. Here, the effect of a crystallographic structure change in InGaO [indium gallium oxide (IGO)] thin-films on the DIBL was investigated. Preferentially oriented IGO (po-IGO) thin-film transistors (TFTs) have outstanding device performances with a field-effect mobility of 81.9 ± 1.3 cm2/(V s), a threshold voltage (VTH) of 0.07 ± 0.03 V, a subthreshold swing of 127 ± 2.0 mV/dec, and a current modulation ratio of (2.9 ± 0.2) × 1011. They also exhibit highly reliable electrical characteristics with a negligible VTH shift of +0.09 (-0.14) V under +2 (-2) MV/cm and 60 °C for 3600 s. More importantly, they reveal strong immunity to the DIBL of 17.5 ± 1.2 mV/V, while random polycrystalline In2O3 (rp-In2O3) and IGO (rp-IGO) TFTs show DIBL values of 197 ± 5.3 and 46.4 ± 1.2 mV/V, respectively. This is quite interesting because the rp- and po-IGO thin-films have the same cation composition ratio (In/Ga = 8:2). Given that the lateral diffusion of oxygen vacancies from the source/drain junction to the channel region via grain boundaries can reduce the effective length (Leff) of the oxide channel, this improved immunity could be attributed to suppressed lateral diffusion by preferential growth. In practice, the po-IGO TFTs have a longer Leff than the rp-In2O3 and -IGO TFTs even with the same patterned length. The effect of the crystallographic-structure-dependent Leff variation on the DIBL was corroborated by technological computer-aided design simulation. This work suggests that the atomic-layer-deposited po-IGO thin-film can be a promising candidate for next-generation electronic devices composed of the miniaturized oxide transistors.

3.
Sci Rep ; 14(1): 7623, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561385

RESUMO

In this paper, high-performance indium gallium oxide (IGO) thin-film transistor (TFT) with a double-gate (DG) structure was developed using an atomic layer deposition route. The device consisting of 10-nm-thick IGO channel and 2/48-nm-thick SiO2/HfO2 dielectric was designed to be suitable for a display backplane in augmented and virtual reality applications. The fabricated DG TFTs exhibit outstanding device performances with field-effect mobility (µFE) of 65.1 ± 2.3 cm2V-1 s-1, subthreshold swing of 65 ± 1 mVdec-1, and threshold voltage (VTH) of 0.42 ± 0.05 V. Both the (µFE) and SS are considerably improved by more than two-fold in the DG IGO TFTs compared to single-gate (SG) IGO TFTs. Important finding was that the DG mode of IGO TFTs exhibits the nearly temperature independent µFE variations in contrast to the SG mode which suffers from the severe remote Coulomb scattering. The rationale for this disparity is discussed in detail based on the potential distribution along the vertical direction using technology computer-aided design simulation. Furthermore, the DG IGO TFTs exhibit a greatly improved reliability with negligible VTH shift of - 0.22 V under a harsh negative bias thermal and illumination stress condition with an electric field of - 2 MVcm-1 and blue light illumination at 80 °C for 3600 s. It could be attributed to the increased electrostatic potential that results in fast re-trapping of the electrons generated by the light-induced ionization of deep level oxygen vacancy defects.

4.
ACS Appl Mater Interfaces ; 15(15): 19137-19151, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37023364

RESUMO

An atomic-layer-deposited oxide nanolaminate (NL) structure with 3 dyads where a single dyad consists of a 2-nm-thick confinement layer (CL) (In0.84Ga0.16O or In0.75Zn0.25O), and a barrier layer (BL) (Ga2O3) was designed to obtain superior electrical performance in thin-film transistors (TFTs). Within the oxide NL structure, multiple-channel formation was demonstrated by a pile-up of free charge carriers near CL/BL heterointerfaces in the form of the so-called quasi-two-dimensional electron gas (q2DEG), which leads to an outstanding carrier mobility (µFE) with band-like transport, steep gate swing (SS), and positive threshold voltage (VTH) behavior. Furthermore, reduced trap densities in oxide NL compared to those of conventional oxide single-layer TFTs ensures excellent stabilities. The optimized device with the In0.75Zn0.25O/Ga2O3 NL TFT showed remarkable electrical performance: µFE of 77.1 ± 0.67 cm2/(V s), VTH of 0.70 ± 0.25 V, SS of 100 ± 10 mV/dec, and ION/OFF of 8.9 × 109 with a low operation voltage range of ≤2 V and excellent stabilities (ΔVTH of +0.27, -0.55, and +0.04 V for PBTS, NBIS, and CCS, respectively). Based on in-depth analyses, the enhanced electrical performance is attributed to the presence of q2DEG formed at carefully engineered CL/BL heterointerfaces. Technological computer-aided design (TCAD) simulation was performed theoretically to confirm the formation of multiple channels in an oxide NL structure where the formation of a q2DEG was verified in the vicinity of CL/BL heterointerfaces. These results clearly demonstrate that introducing a heterojunction or NL structure concept into this atomic layer deposition (ALD)-derived oxide semiconductor system is a very effective strategy to boost the carrier-transporting properties and improve the photobias stability in the resulting TFTs.

5.
Small Methods ; 7(7): e2201522, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36929118

RESUMO

In this paper, In0.22 Znδ Sn0.78- δ O1.89- δ (δ = 0.55) films with a single spinel phase are successfully grown at the low temperature of 300 °C through careful cation composition design and a catalytic chemical reaction. Thin-film transistors (TFTs) with amorphous In0 .22 Znδ Sn0.78- δ O1.89- δ (δ = 0.55) channel layers have a reasonable mobility of 41.0 cm2 V-1 s-1 due to the synergic intercalation of In and Sn ions. In contrast, TFTs with polycrystalline spinel In0 .22 Znδ Sn0.78- δ O1.89- δ (δ = 0.55) channel layers, achieved through a metal-induced crystallization at 300 °C, exhibit a remarkably high field-effect mobility of ≈83.2 cm2 V-1 s-1 and excellent stability against external gate bias stress, which is attributed to the uniform formation of the highly ordered spinel phase. The relationships between cation composition, microstructure, and performance for the In2 O3 -ZnO-SnO2 ternary component system are investigated rigorously to attain in-depth understanding of the roles of various crystalline phases, including spinel Zn2- y Sn1- y In2 y O4 (y = 0.45), bixbyite In2-2 x Znx Inx O4 (x = 0.4), rutile SnO2 , and a homologous compound of compound (ZnO)k (In2 O3 ) (k = 5). This work concludes that the cubic spinel phase of Zn2- y Sn1- y In2 y O4 (y = 0.45) film is a strong contender as a substitute for semiconducting polysilicon as a backplane channel ingredient for mobile active-matrix organic light-emitting diode displays.

6.
Adv Mater ; 35(43): e2204663, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35862931

RESUMO

As Si has faced physical limits on further scaling down, novel semiconducting materials such as 2D transition metal dichalcogenides and oxide semiconductors (OSs) have gained tremendous attention to continue the ever-demanding downscaling represented by Moore's law. Among them, OS is considered to be the most promising alternative material because it has intriguing features such as modest mobility, extremely low off-current, great uniformity, and low-temperature processibility with conventional complementary-metal-oxide-semiconductor-compatible methods. In practice, OS has successfully replaced hydrogenated amorphous Si in high-end liquid crystal display devices and has now become a standard backplane electronic for organic light-emitting diode displays despite the short time since their invention in 2004. For OS to be implemented in next-generation electronics such as back-end-of-line transistor applications in monolithic 3D integration beyond the display applications, however, there is still much room for further study, such as high mobility, immune short-channel effects, low electrical contact properties, etc. This study reviews the brief history of OS and recent progress in device applications from a material science and device physics point of view. Simultaneously, remaining challenges and opportunities in OS for use in next-generation electronics are discussed.

7.
ACS Appl Mater Interfaces ; 14(51): 57016-57027, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36511797

RESUMO

This study investigated the effect of hydrogen (H) on the performance of amorphous In-Ga-Zn-Sn oxide (a-In0.29Ga0.35Zn0.11Sn0.25O) thin-film transistors (TFTs). Ample H in plasma-enhanced atomic layer deposition (PEALD)-derived SiO2 can diffuse into the underlying a-IGZTO film during the postdeposition annealing (PDA) process, which affects the electrical properties of the resulting TFTs due to its donor behavior in the a-IGZTO. The a-In0.29Ga0.35Zn0.11Sn0.25O TFTs at the PDA temperature of 400 °C exhibited a remarkably higher field-effect mobility (µFE) of 85.9 cm2/Vs, a subthreshold gate swing (SS) of 0.33 V/decade, a threshold voltage (VTH) of -0.49 V, and an ION/OFF ratio of ∼108; these values are superior compared to those of unpassivated a-In0.29Ga0.35Zn0.11Sn0.25O TFTs (µFE = 23.3 cm2/Vs, SS = 0.36 V/decade, and VTH = -3.33 V). In addition, the passivated a-In0.29Ga0.35Zn0.11Sn0.25O TFTs had good stability against the external gate bias duration. This performance change can be attributed to the substitutional H doping into oxygen sites (HO) leading to a boost in ne and µFE. In contrast, the beneficial HO effect was barely observed for amorphous indium gallium zinc oxide (a-IGZO) TFTs, suggesting that the hydrogen-doping-enabled boosting of a-IGZTO TFTs is strongly related to the existence of Sn cations. Electronic calculations of VO and HO using density functional theory (DFT) were performed to explain this disparity. The introduction of SnO2 in a-IGZO is predicted to cause a conversion from shallow VO to deep VO due to the lower formation energy of deep VO, which is effectively created around Sn cations. The formation of HO by H doping in the IGZTO facilitates the efficient connection of atomic states forming the conduction band more smoothly. This reduces the effective mass and enhances the carrier mobility.

8.
ACS Appl Mater Interfaces ; 14(2): 3008-3017, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35000384

RESUMO

Ultraviolet to infrared broadband spectral detection capability is a technological challenge for sensing materials being developed for high-performance photodetection. In this work, we stacked 9 nm-thick tellurium oxide (TeOx) and 8 nm-thick InGaSnO (IGTO) into a heterostructure at a low temperature of 150 °C. The superior photoelectric characteristics we achieved benefit from the intrinsic optical absorption range (300-1500 nm) of the hexagonal tellurium (Te) phase in the TeOx film, and photoinduced electrons are driven effectively by band alignment at the TeOx/IGTO interface under illumination. A photosensor based on our optimized heterostructure exhibited a remarkable detectivity of 1.6 × 1013 Jones, a responsivity of 84 A/W, and a photosensitivity of 1 × 105, along with an external quantum efficiency of 222% upon illumination by blue light (450 nm). Simultaneously, modest detection properties (responsivity: ∼31 A/W, detectivity: ∼6 × 1011 Jones) for infrared irradiation at 970 nm demonstrate that this heterostructure can be employed as a broadband phototransistor. Furthermore, its low-temperature processability suggests that our proposed concept might be used to design array optoelectronic devices for wide band detection with high sensitivity, flexibility, and stability.

9.
ACS Appl Mater Interfaces ; 13(24): 28451-28461, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34111928

RESUMO

In this work, high-performance amorphous In0.75Ga0.23Sn0.02O (a-IGTO) transistors with an atomic layer-deposited Al2O3 dielectric layer were fabricated at a maximum processing temperature of 150 °C. Hydrogen (H) and excess oxygen (Oi) in the Al2O3 film, which was controlled by adjusting the oxygen radical density (PO2: flow rate of O2/[Ar+O2]) in the radio-frequency (rf) plasma during ALD growth of Al2O3, significantly affected the performance and stability of the resulting IGTO transistors. The concentrations of H and Oi in Al2O3/IGTO stacks according to PO2 were characterized by secondary ion mass spectroscopy, X-ray photoelectron spectroscopy, hard X-ray photoemission spectroscopy, and thermal desorption spectroscopy. The high concentration of H at a low PO2 of 2.5% caused heavy electron doping in the underlying IGTO during thermal annealing at 150 °C, leading to a conductive behavior in the resulting transistor without modulation capability. In contrast, a high PO2 condition of 20% introduced O2 molecules (or Oi) into the Al2O3 film, which negatively impacted the carrier mobility and caused anomalous photo-bias instability in the IGTO transistor. Through in-depth understanding of how to manipulate H and Oi in Al2O3 by controlling the PO2, we fabricated high-performance IGTO transistors with a high field-effect mobility (µFE) of 58.8 cm2/Vs, subthreshold gate swing (SS) of 0.12 V/decade, threshold voltage (VTH) of 0.5 V, and ION/OFF ratio of ∼109 even at the maximum processing temperature of 150 °C. Simultaneously, the optimized devices were resistant to exposure to external positive gate bias stress (PBS) and negative bias stress (NBS) for 3600 s, where the VTH shifts for exposure to PBS and NBS for this duration were 0.1 V and -0.15 V, respectively.

10.
ACS Appl Mater Interfaces ; 11(50): 47025-47036, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31741376

RESUMO

Effects of lanthanum (La) loading on the structural, optical, and electrical properties of tin monoxide (SnO) films were examined as a p-type semiconducting layer. La loading up to 1.9 atom % caused the texturing of the tetragonal SnO phase with a preferential orientation of (101), which was accompanied by the smoother surface morphology. Simultaneously, the incorporated La cation suppressed the formation of n-type SnO2 in the La-doped SnO film and widened its optical band gap. These variations allowed the 1.9 atom % La-loaded SnO film to have a high hole mobility and carrier density, compared with the La-free control SnO film. The superior semiconducting property was reflected in the p-type thin-film transistor (TFT). The control SnO TFTs exhibited the field-effect mobility (µSAT) and ION/OFF ratio of 0.29 cm2 V-1 s-1 and 5.4 × 102, respectively. Enhancement in the µSAT value and ION/OFF ratio was observed for the TFTs with the 1.9 atom % La-loaded SnO channel layer: they were improved to 1.2 cm2 V-1 s-1 and 7.3 × 103, respectively. The reason for this superior performance was discussed on the basis of smoother morphology, suppression of disproportionation conversion from Sn2+ to Sn + Sn4+, and reduced gap-state density.

11.
ACS Appl Mater Interfaces ; 11(43): 40214-40221, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31577123

RESUMO

This paper reports a new p-type tin oxyselenide (SnSeO), which was designed with the concept that the valence band edge from O 2p orbitals in the majority of metal oxides becomes delocalized by hybridizing Se 4p and Sn 5s orbitals. As the Se loading increased, the SnSeO film structures were transformed from tetragonal SnO to orthorhombic SnSe, which was accompanied by an increase in the amorphous phase portion and smooth morphologies. The SnSe0.56O0.44 film annealed at 300 °C exhibited the highest Hall mobility (µHall), 15.0 cm2 (V s)-1, and hole carrier density (nh), 1.2 × 1017 cm-3. The remarkable electrical performance was explained by the low hole effective mass, which was calculated by a first principle calculation. Indeed, the fabricated field-effect transistor (FET) with a p-channel SnSe0.56O0.44 film showed the high field-effect mobility of 5.9 cm2 (V s)-1 and an ION/OFF ratio of 3 × 102. This work demonstrates that anion alloy-based hybridization provides a facile route to the realization of a high-performance p-channel FET and complementary devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...