Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 12218, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108609

RESUMO

Mid-infrared wavelengths are called the molecular fingerprint region because it contains the fundamental vibrational modes inherent to the substances of interest. Since the mid-infrared spectrum can provide non-destructive identification and quantitative analysis of unknown substances, miniaturized mid-infrared spectrometers for on-site diagnosis have attained great concern. Filter-array based on-chip spectrometer has been regarded as a promising alternative. In this study, we explore a way of applying a pillar-type plasmonic nanodiscs array, which is advantageous not only for excellent tunability of resonance wavelength but also for 2-dimensional integration through a single layer process, to the multispectral filter array for the on-chip spectrometer. We theoretically and experimentally investigated the optical properties of multi-periodic triangular lattices of metal nanodiscs array that act as stopband filters in the mid-infrared region. Soft-mold reverse nanoimprint lithography with a subsequent lift-off process was employed to fabricate the multispectral filter array and its filter function was successfully extracted using a Fourier transform infrared microscope. With the measured filter function, we tested the feasibility of target spectrum reconstruction using a Tikhonov regularization method for an ill-posed linear problem and evaluated its applicability to the infrared spectroscopic sensor that monitors an oil condition. These results not only verify that the multispectral filter array composed of stopband filters based on the metal nanodiscs array when combined with the spectrum reconstruction technique, has great potential for use to a miniaturized mid-infrared on-chip spectrometer, but also provide effective guidance for the filter design.

2.
Commun Chem ; 3(1): 37, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36703405

RESUMO

The silicon surface texture significantly affects the current density and efficiency of perovskite/silicon tandem solar cells. However, only a few studies have explored fabricating perovskite on textured silicon and the effect of texture on perovskite films because of the limitations of solution processes. Here we produce conformal perovskite on textured silicon with a dry two-step conversion process that incorporates lead oxide sputtering and direct contact with methyl ammonium iodide. To separately analyze the influence of each texture structure on perovskite films, patterned texture, high-resolution photoluminescence (µ-PL), and light beam-induced current (µ-LBIC), 3D mapping is used. This work elucidates conformal perovskite on textured surfaces and shows the effects of textured silicon on the perovskite layers with high-resolution 3D mapping. This approach can potentially be applied to any type of layer on any type of substrate.

4.
Sci Rep ; 9(1): 19951, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882593

RESUMO

To fabricate a tunable optical filter with a fast response in the near infrared region, a tunable guided-mode resonance (GMR) filter using graphene was proposed and its performance was optimized. In this study, a rigorous coupled wave analysis method was employed to systematically investigate the effects of geometrical configuration of graphene-integrated GMR filters and the optical properties of constituent materials including graphene on their spectral response in terms of tunability and extinction ratio. It was found that as the graphene is located close to the waveguide and the evanescent-field strength at the interface increases, the GMR filter exhibits better tunability. The bandwidth of the filter could be drastically reduced by adopting a low-index contrast grating layer, so that the extinction ratio of an optical signal could be greatly improved from 0.91 dB to 27.99 dB as the index contrast decreased from 0.99 to 0.47, respectively. Furthermore, new practical device designs, that is easy to fabricate and effectively implement the electric-field doping of graphene at low gate voltage, were also suggested and theoretically validated. These results demonstrate not only the excellent potential of a graphene-based tunable GMR filter but also provide practical design guidelines for optimizing the device performance.

5.
Sci Rep ; 9(1): 19736, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31874998

RESUMO

We report high efficiency cell processing technologies for the ultra-thin Si solar cells based on crystalline Si thin foils (below a 50 µm thickness) produced by the proton implant exfoliation (PIE) technique. Shallow textures of submicrometer scale is essential for effective light trapping in crystalline Si thin foil based solar cells. In this study, we report the fabrication process of random Si nanohole arrays of ellipsoids by a facile way using low melting point metal nanoparticles of indium which were vacuum-deposited and dewetted spontaneously at room temperature. Combination of dry and wet etch processes with indium nanoparticles as etch masks enables the fabrication of random Si nanohole arrays of an ellipsoidal shape. The optimized etching processes led to effective light trapping nanostructures comparable to conventional micro-pyramids. We also developed the laser fired contact (LFC) process especially suitable for crystalline Si thin foil based PERC solar cells. The laser processing parameters were optimized to obtain a shallow LFC contact in conjunction with a low contact resistance. Lastly, we applied the random Si nanohole arrays and the LFC process to the crystalline Si thin foils (a 48 µm thickness) produced by the PIE technique and achieved the best efficiency of 17.1% while the planar PERC solar cell without the Si nanohole arrays exhibit 15.6%. Also, we demonstrate the ultra-thin wafer is bendable to have a 16 mm critical bending radius.

6.
ACS Appl Mater Interfaces ; 11(35): 31923-31933, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31393693

RESUMO

Achieving favorable band profile in low-temperature-grown Cu(In,Ga)Se2 thin films has been challenging due to the lack of thermal diffusion. Here, by employing a thin Ag precursor layer, we demonstrate a simple co-evaporation process that can effectively control the Ga depth profile in CIGS films at low temperature. By tuning the Ag precursor thickness (∼20 nm), typical V-shaped Ga gradient in the copper indium gallium diselenide (CIGS) film could be substantially mitigated along with increased grain sizes, which improved the overall solar cell performance. Structural and compositional analysis suggests that formation of liquid Ag-Se channels along the grain boundaries facilitates Ga diffusion and CIGS recrystallization at low temperatures. Formation of a fine columnar grain structure in the first evaporation stage was beneficial for subsequent Ga diffusion and grain coarsening. Compared to the modified co-evaporation process where the Ga evaporation profile has been directly tuned, the Ag precursor approach offers a convenient route for absorber engineering and is potentially more applicable for roll-to-roll fabrication system.

7.
Sci Rep ; 8(1): 3504, 2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472631

RESUMO

Several techniques have been proposed for kerfless wafering of thin Si wafers, which is one of the most essential techniques for reducing Si material loss in conventional wafering methods to lower cell cost. Proton induced exfoliation is one of promising kerfless techniques due to the simplicity of the process of implantation and cleaving. However, for application to high efficiency solar cells, it is necessary to cope with some problems such as implantation damage removal and texturing of (111) oriented wafers. This study analyzes the end-of-range defects at both kerfless and donor wafers and ion cutting sites. Thermal treatment and isotropic etching processes allow nearly complete removal of implantation damages in the cleaved-thin wafers. Combining laser interference lithography and a reactive ion etch process, a facile nanoscale texturing process for the kerfless thin wafers of a (111) crystal orientation has been developed. We demonstrate that the introduction of nanohole array textures with an optimal design and complete damage removal lead to an improved efficiency of 15.2% based on the kerfless wafer of a 48 µm thickness using the standard architecture of the Al back surface field.

8.
Sci Rep ; 7(1): 15723, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29146956

RESUMO

A monolithic tandem solar cell consisting of crystalline Si (c-Si)/indium tin oxide (ITO)/CuGaSe2 (CGSe) was demonstrated by stacking a CGSe solar cell on a c-Si/ITO solar cell to obtain a photovoltaic conversion efficiency of about 10%. Electrical analyses based on cell-selective light absorption were applied to individually characterize the photovoltaic performances of the top and bottom subcells. Illumination at a frequency that could be absorbed only by a targeted top or bottom subcell permitted measurement of the open-circuit voltage of the target subcell and the shunt resistance of the non-target subcell. The cell parameters measured from each subcell were very similar to those of the corresponding single cell, confirming the validity of the suggested method. In addition, separating the light absorption intensities at the top and bottom subcells made us measure the bias-dependent photocurrent for each subcell. The series resistance of a c-Si/ITO/CGSe cell subjected to bottom-cell limiting conditions was slightly large, implying that the tunnel junction was a little resistive or slightly beyond ohmic. This analysis demonstrated that aside from producing a slightly resistive tunnel junction, our fabrication processes were successful in monolithically integrating a CGSe cell onto a c-Si/ITO cell without degrading the performances of both cells.


Assuntos
Absorção de Radiação , Eletricidade , Selênio/química , Silício/química , Energia Solar , Luz Solar
9.
Sci Rep ; 7(1): 7336, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28779077

RESUMO

We demonstrated fabrication of a parabola shaped Si nanostructures of various periods by combined approach of nanosphere lithography and a single step CF4/O2 reactive ion etch (RIE) process. Silica nanosphere monolayers in a hexagonal array were well deposited by a solvent controlled spin coating technique based on binary organic solvents. We showed numerically that a parabolic Si nanostructure of an optimal period among various-shaped nanostructures overcoated with a dielectric layer of a 70 nm thickness provide the most effective antireflection. As the simulation results as a design guide, we fabricated the parabolic Si nanostructures of a 520 nm period and a 300 nm height exhibiting the lowest weighted reflectance of 2.75%. With incorporation of such parabolic Si nanostructures, a damage removal process for 20 sec and SiNx antireflection coating of a 70 nm thickness, the efficiency of solar cells increased to 17.2% while that of the planar cells without the nanostructures exhibited 16.2%. The efficiency enhancement of the cell with the Si nanostructures was attributed to the improved photocurrents arising from the broad spectral antireflection which was confirmed by the external quantum efficiency (EQE) measurements.

10.
ACS Nano ; 9(4): 3760-71, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25769343

RESUMO

To achieve commercialization and widespread application of next-generation photovoltaics, it is important to develop flexible and cost-effective devices. Given this, the elimination of expensive transparent conducting oxides (TCO) and replacement of conventional glass substrates with flexible plastic substrates presents a viable strategy to realize extremely low-cost photovoltaics with a potentially wide applicability. To this end, we report a completely TCO-free and flexible dye-sensitized solar cell (DSSC) fabricated on a plastic substrate using a unique transfer method and back-contact architecture. By adopting unique transfer techniques, the working and counter electrodes were fabricated by transferring high-temperature-annealed TiO2 and Pt/carbon films, respectively, onto flexible plastic substrates without any exfoliation. The fabricated working electrode with the conventional counter electrode exhibited a record efficiency for flexible DSSCs of 8.10%, despite its TCO-free structure. In addition, the completely TCO-free and flexible DSSC exhibited a remarkable efficiency of 7.27%. Furthermore, by using an organic hole-transporting material (spiro-MeOTAD) with the same transfer method, solid-state flexible TCO-free DSSCs were also successfully fabricated, yielding a promising efficiency of 3.36%.

11.
Sci Rep ; 5: 7690, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25573530

RESUMO

The cell-to-module efficiency gap in Cu(In,Ga)Se2 (CIGS) monolithically integrated solar modules is enhanced by contact resistance between the Al-doped ZnO (AZO) and Mo back contact layers, the P2 contact, which connects adjacent cells. The present work evaluated the P2 contact resistance, in addition to the TCO resistance, using an embedded transmission line structure in a commercial-grade module without using special sample fabrication methods. The AZO layers between cells were not scribed; instead, the CIGS/CdS/i-ZnO/AZO device was patterned in a long stripe to permit measurement of the Mo electrode pair resistance over current paths through two P2 contacts (Mo/AZO) and along the AZO layer. The intercept and slope of the resistance as a function of the electrode interval yielded the P2 contact resistance and the TCO resistance, respectively. Calibration of the parasitic resistances is discussed as a method of improving the measurement accuracy. The contribution of the P2 contact resistance to the series resistance was comparable to that of the TCO resistance, and its origin was attributed to remnant MoSe2 phases in the P2 region, as verified by transmission electron microscopy.

12.
Opt Express ; 22(20): 24840-6, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25322057

RESUMO

A new moiré pattern appearing in the off-state of a display system with a reflecting surface under illumination of an external ambient light source was analyzed. The origin of the new moiré pattern was attributed to the moiré pattern which is formed on the reflecting surface by external light and plays as a new light source with intensity profile. Configuring an optically equivalent system with no reflecting surface layer was proposed in order to overcome the limitation of new simulation program, which was previously proved to be very efficient in computation time but unable to handle a non-sequential system containing a reflecting surface. It was verified that the new simulation algorithm combined with an equivalent configuration could provide an accurate and computation time-efficient analyses even for a system containing non-sequential stacked layer such as a reflecting surface.

13.
PLoS One ; 9(6): e98992, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24911167

RESUMO

The waveguide-coupled bimetallic (WcBiM) surface plasmon resonance (SPR) chip had been utilized in the intensity interrogation detection mode to detect amyloid-ß42 (Aß42), a biomarker of the Alzheimer disease. The SPR reflectance curve of the WcBiM chip has the narrower full-width-at-half-maximum (FWHM) compared with the SPR reflectance curve of the conventional gold (Au) chip, resulting in the steeper gradient. For the enhancement of resolution, the light source was fixed at an angle where the slope of the reflectance curve is the steepest, and the change in the reflectance was monitored. For the detection of Aß42, the antibody of Aß42 (anti-Aß42) was immobilized on the WcBiM SPR chip using the self-assembled monolayer. The SPR responses, the average changes in the reflectance to the Aß42 at the concentrations of 100 pg/ml, 250 pg/ml, 500 pg/ml, 750 pg/ml, 1,000 pg/ml, and 2,000 pg/ml were 0.0111%, 0.0305%, 0.0867%, 0.1712%, 0.3021%, and 0.5577%, respectively, for the three replicates. From linear regression analysis, the calibration curve indicated that the SPR response had a linear relation with Aß42 with the concentration in the range of 100 pg/ml to 2,000 pg/ml. A control experiment showed the anti-Aß42-modified surface of the WcBiM chip had a high specificity to Aß42. Thus, the enhanced resolution by utilizing the WcBiM SPR chip in the intensity interrogation detection mode aids the diagnosis of the Alzheimer disease by detecting the Aß42 around the criteria concentration (500 pg/ml) without any labeling.


Assuntos
Peptídeos beta-Amiloides/análise , Ouro , Fragmentos de Peptídeos/análise , Prata , Ressonância de Plasmônio de Superfície/métodos , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/imunologia , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Fragmentos de Peptídeos/imunologia
14.
Opt Express ; 22(3): 3128-36, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663603

RESUMO

A precise and fast computational method for the simulation and analysis of moiré patterns is proposed. This new algorithm is based on convolution with superposition of the intensity profile which is transmitted from the optical layers and the point spread function. The computational time is shown to be much faster than that of the ray-tracing algorithm because the new algorithm does not involve a massive calculation. Also, information on the moiré pitch can be extracted directly from the sampling data of the moiré patterns.

15.
Opt Express ; 22 Suppl 6: A1431-9, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25607300

RESUMO

The use of ultrathin c-Si (crystalline silicon) wafers thinner than 20 µm for solar cells is a very promising approach to realize dramatic reduction in cell cost. However, the ultrathin c-Si requires highly effective light trapping to compensate optical absorption reduction. Conventional texturing in micron scale is hardly applicable to the ultrathin c-Si wafers; thus, nano scale texturing is demanded. In general, nanotexturing is inevitably accompanied by surface area enlargements, which must be minimized in order to suppress surface recombination of minority carriers. In this study, we demonstrate using optical simulations that periodic c-Si nanodisk arrays of short heights less than 200 nm and optimal periods are very useful in terms of light trapping in the ultrathin c-Si wafers while low surface area enlargements are maintained. Double side texturing with the nanodisk arrays leads to over 90% of the Lambertian absorption limit while the surface area enlargement is kept below 1.5.


Assuntos
Nanopartículas/química , Nanopartículas/ultraestrutura , Refratometria/instrumentação , Silício/química , Ressonância de Plasmônio de Superfície/instrumentação , Absorção de Radiação , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Modelos Teóricos , Nanotecnologia/instrumentação , Espalhamento de Radiação
16.
Opt Express ; 21 Suppl 4: A669-76, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24104493

RESUMO

Transparent metal grid combining with plasmonic absorption enhancement is a promising replacement to indium tin oxide thin films. We numerically demonstrate metal grids in one or two dimension lead to plasmonic absorption enhancements in ultrathin organic solar cells. In this paper, we study optical design of metal grids for plasmonic light trapping and identify different plasmonic modes of the surface plasmon polaritons excited at the interfaces of glass/metal grids, metal grids/active layers, and the localized surface plasmon resonance of the metal grids using numerical calculations. One dimension metal grids with the optimal design of a width and a period lead to the absorption enhancement in the ultrathin active layers of 20 nm thickness by a factor of 2.6 under transverse electric polarized light compared to the case without the metal grids. Similarly, two dimensional metal grids provide the absorption enhancement by a factor of 1.8 under randomly polarized light.

17.
Nanoscale Res Lett ; 8(1): 344, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23914936

RESUMO

The characteristics of a waveguide-coupled bimetallic (WcBiM) chip in a miniaturized surface plasmon resonance (SPR) sensor and its detection capability for a low molecular weight biomolecule were investigated. The configuration of the WcBiM chip was gold (Au)/waveguide (ZnS-SiO2)/silver (Ag). In the intensity measurement mode, the sensitivity could be improved by reducing the full width at half maximum (FWHM) of the reflectance curve. The FWHM of the WcBiM chip is narrower than that of the Au chip, which suggests that the slope of the reflectance curve for the WcBiM chip is steeper. In order to generate enhanced resolution, the reflectance should be monitored at the specific angle where the slope is the steepest in the reflectance curve. For the detection of biotin that is a low molecular weight biomolecule, streptavidin was formed on the SPR sensor chip surface. The response of the SPR to biotin at various concentrations was then acquired. The sensitivities of the WcBiM chip and the Au chip were 0.0052%/(ng/ml) and 0.0021%/(ng/ml), respectively. The limit of detection of the biotin concentration for both the WcBiM and Au chips was calculated. The values were 2.87 ng/ml for the WcBiM chip and 16.63 ng/ml for the Au chip. Enhancement of the sensitivity in the intensity detection mode was achieved using the WcBiM chip compared with the Au chip. Therefore, sufficient sensitivity for the detection of a disease-related biomarker is attainable with the WcBiM chip in the intensity measurement mode using a miniaturized SPR sensor.

18.
Opt Express ; 20(19): 21729-38, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23037292

RESUMO

A novel approach to give an excellent tunability and self-referencing capability was presented by applying a concept of waveguide coupled surface plasmon resonance mode to a fiber-optic sensor. The presence of dielectric waveguide sandwiched between two metal layers made it possible to precisely tune the resonance wavelength in a broad range from visible to infrared region and to generate multiple modes which may be selectively used for suitable applications. Our approach also verified the potential capability of self-referencing based on a remarkable difference in sensitivity between the plasmonic and waveguide modes excited by p- and s-polarized lights, respectively, without using an additional reference channel. Experimental measurement carried out on sucrose solutions with varying concentration demonstrated the feasibility of our approach.

19.
J Nanosci Nanotechnol ; 12(4): 3224-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22849093

RESUMO

Optimizing the design of the surface texture is an essential aspect of Si solar cell technology as it can maximize the light trapping efficiency of the cells. The proper simulation tools can provide efficient means of designing and analyzing the effects of the texture patterns on light confinement in an active medium. In this work, a newly devised algorithm termed Slab-Outline, based on a ray tracing technique, is reported. The details of the intersection searching logic adopted in Slab-Outline algorithm are also discussed. The efficiency of the logic was tested by comparing the computing time between the current algorithm and the Constructive Solid Geometry algorithm, and its superiority in computing speed was proved. The validity of the new algorithm was verified by comparing the simulated reflectance spectra with the measured spectra from a textured Si surface.

20.
J Nanosci Nanotechnol ; 12(4): 3665-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22849192

RESUMO

ZnO films co-doped with fluorine and hydrogen were prepared on Corning glass by radio frequency magnetron sputtering of ZnO targets with varying amounts of ZnF2 in H2/Ar gas mixtures of varying H2 content. The ZnO films' electrical, optical, and structural properties in combination with their compositional properties were investigated. A small addition of H2 to the sputtering gas caused a drastic increase of Hall mobility with a marginal increase in carrier concentration, indicating an effective passivation of grain boundaries due to hydrogenation. For further increase of H2 in sputter gas, the Hall mobility remained at a relatively constant level while the carrier concentration increased steadily. Most of the ZnO films co-doped with fluorine and hydrogen showed average transmittance higher than 83% in the 400-800 nm range, while the average absorption coefficients were lower than 600 cm(-1), implying very low absorption loss in these films. It was discovered that the fabrication of ZnO films with a Hall mobility higher than 40 cm2/Vs and a very low absorption loss in the visible range is possible by co-doping hydrogen and fluorine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA