Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pol J Microbiol ; 72(3): 307-317, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37725893

RESUMO

The prokaryotic microalga Limnothrix redekei KNUA012 isolated from a freshwater bloom sample from Lake Hapcheon, Hapcheon-gun, South Korea, was investigated for its potential as a biofuel feedstock. Microalgae produce straight-chain alkanes/alkenes from acyl carrier protein-linked fatty acyls via aldehyde decarbonylase (AD; EC 1.2.1.3), which can convert aldehyde intermediates into various biofuel precursors, such as alkanes and free fatty acids. In L. redekei KNUA012, long-chain ADs can convert fatty aldehyde intermediates into alkanes. After heterologous AD expression in Escherichia coli (pET28-AD), we identified an AD in L. redekei KNUA012 that can synthesize various alkanes, such as pentadecane (C15H32), 8-heptadecene (C17H34), and heptadecane (C17H36). These alkanes can be directly used as fuels without transesterification. Biodiesel constituents including dodecanoic acid (C13H26O2), tetradecanoic acid (C15H30O2), 9-hexa decenoic acid (C17H32O2), palmitoleic acid (C17H32O2), hexadecanoic acid (C17H34O2), 9-octadecenoic acid (C19H36O2), and octadecanoic acid (C19H38O2) are produced by L. redekei KNUA012 as the major fatty acids. Our findings suggest that Korean domestic L. redekei KNUA012 is a promising resource for microalgae-based biofuels and biofuel feedstock.


Assuntos
Microalgas , Biocombustíveis , Alcanos , Escherichia coli/genética
2.
Front Bioeng Biotechnol ; 10: 883522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507271

RESUMO

Microbes are essential in biofloc technology for controlling nitrogen levels in water. The composition and function of microorganisms with biofloc systems were reported; however, data on microorganisms other than bacteria, such as algae (which are essential in the nitrogen cycle) and zooplankton (which are bacterial and algal predators), remain limited. The microbial communities (including bacteria, algae, zooplankton, and fungi) were investigated in shrimp farms using biofloc technology. Using Illumina MiSeq sequencing, the V4 region of 18S rRNA and the V3-V4 region of 16S rRNA were utilized for the analysis of the eukaryotic and prokaryotic microbial communities. As a result, it was found that the biofloc in the shrimp farm consisted of 48.73%-73.04% eukaryotic organisms and 26.96%-51.27% prokaryotic organisms. In these shrimp farms, prokaryotic microbial communities had higher specie richness and diversity than eukaryotic microbial communities. However, the eukaryotic microbial communities were more abundant than their prokaryotic counterparts, while algae and zooplankton dominated them. It was discovered that the structures of the microbial communities in the shrimp farms seemed to depend on the effects of predation by zooplankton and other related organisms. The results provided the nitrogen cycle in biofloc systems by the algal and bacterial groups in microbial communities.

3.
Antioxidants (Basel) ; 11(6)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35739975

RESUMO

Abiotic stress induces reactive oxygen species (ROS) generation in plants, and high ROS levels can cause partial or severe oxidative damage to cellular components that regulate the redox status. Here, we developed salt-tolerant transgenic rice plants that overexpressed the dehydroascorbate reductase gene (OsDHAR1) under the control of a stress-inducible sweet potato promoter (SWPA2). OsDHAR1-expressing transgenic plants exhibited improved environmental adaptability compared to wild-type plants, owing to enhanced ascorbate levels, redox homeostasis, photosynthetic ability, and membrane stability through cross-activation of ascorbate-glutathione cycle enzymes under paddy-field conditions, which enhanced various agronomic traits, including root development, panicle number, spikelet number per panicle, and total grain yield. dhar2-knockdown plants were susceptible to salt stress, and owing to poor seed maturation, exhibited reduced biomass (root growth) and grain yield under paddy field conditions. Microarray revealed that transgenic plants highly expressed genes associated with cell growth, plant growth, leaf senescence, root development, ROS and heavy metal detoxification systems, lipid metabolism, isoflavone and ascorbate recycling, and photosynthesis. We identified the genetic source of functional genomics-based molecular breeding in crop plants and provided new insights into the physiological processes underlying environmental adaptability, which will enable improvement of stress tolerance and crop species productivity in response to climate change.

4.
Pol J Microbiol ; 70(2): 215-233, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34349812

RESUMO

The diversity indices of eukaryotic microalgal groups in the Jeonglyeongchi, Waegok, and Wangdeungjae marshes of Mount Jiri, Korea, were measured using Illumina MiSeq and culture-based analyses. Waegok marsh had the highest species richness, with a Chao1 value of 828.00, and the highest levels of species diversity, with Shannon and Simpson index values of 6.36 and 0.94, respectively, while Wangdeungjae marsh had the lowest values at 2.97 and 0.75, respectively. The predominant species in all communities were Phagocata sibirica (Jeonglyeongchi, 68.64%), Aedes albopictus (Waegok, 34.77%), Chaetonotus cf. (Waegok, 24.43%), Eimeria sp. (Wangdeungjae, 26.17%), and Eumonhystera cf. (Wangdeungjae, 22.27%). Relative abundances of the microalgal groups Bacillariophyta (diatoms) and Chlorophyta (green algae) in each marsh were respectively: Jeonglyeongchi 1.38% and 0.49%, Waegok 7.0% and 0.3%, and Wangdeungjae 10.41% and 4.72%. Illumina MiSeq analyses revealed 34 types of diatoms and 13 types of green algae. Only one diatom (Nitzschia dissipata) and five green algae (Neochloris sp., Chlamydomonas sp., Chlorococcum sp., Chlorella vulgaris, Scenedesmus sp.) were identified by a culture-based analysis. Thus, Illumina MiSeq analysis can be considered an efficient tool for analyzing microbial communities. Overall, our results described the environmental factors associated with geographically isolated mountain marshes and their respective microbial and microalgal communities.


Assuntos
Biodiversidade , Eucariotos/classificação , Eucariotos/fisiologia , Microalgas/fisiologia , Microbiota/fisiologia , Áreas Alagadas , Meio Ambiente , República da Coreia
5.
Front Genet ; 12: 669702, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149810

RESUMO

In this study, we characterized the potential of colony-forming green algae, Botryosphaerella sudetica KNUA107, isolated from Ulleung Island, South Korea, as a bioresource and analyzed the effects of mixotrophic cultivation on its bioresource production efficiency. Internal transcribed spacer (ITS) (ITS1, 5.8S, and ITS2), ribulose bisphosphate carboxylase large subunit (rbcL), and elongation factor Tu (tufa) regions were used for molecular identification and phylogenetic analysis. B. sudetica KNUA107 had a strong relationship with the green algae of Botryococcus and Botryosphaerella genera, which are colony-forming species, and was also associated with members of the Neochloris genus. To improve biomass productivity, we tested mixotrophic cultivation conditions using several organic carbon sources. Glucose supplementation stimulated B. sudetica KNUA107 growth and reduced the time needed to reach the stationary phase. In addition, the colony size was 1.5-2.0 times larger with glucose than in photoautotrophic cultures, and settleability improved in proportion to colony size. The total lipid content and biomass productivity were also higher in cultures supplemented with glucose. Among the lipid components, saturated fatty acids and monounsaturated fatty acids had the highest proportion. Our study suggests that B. sudetica KNUA107, which has enhanced efficiency in biomass production and lipid components under mixotrophic cultivation, has high potential as a bioresource.

6.
Front Bioeng Biotechnol ; 9: 774143, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976972

RESUMO

In the past, biomass production using microalgae culture was dependent on inorganic carbon sources as microalgae are photosynthetic organisms. However, microalgae utilize both organic and inorganic carbon sources, such as glucose. Glucose is an excellent source of organic carbon that enhances biomass yield and the content of useful substances in microalgae. In this study, photoautotrophic, mixotrophic, and heterotrophic cultivation conditions were applied to three well-known strains of Chlorella (KNUA104, KNUA114, and KNUA122) to assess biomass productivity, and compositional changes (lipid, protein, and pigment) were evaluated in BG11 media under photoautotrophic, mixotrophic, and heterotrophic conditions utilizing different initial concentrations of glucose (5, 10, 15, 20, and 25 g L-1). Compared to the photoautotrophic condition (biomass yield: KNUA104, 0.35 ± 0.04 g/L/d; KNUA114, 0.40 ± 0.08 g/L/d; KNUA122, 0.38 ± 0.05 g/L/d) glucose was absent, and the biomass yield improved in the mixotrophic (glucose: 20 g L-1; biomass yield: KNUA104, 2.99 ± 0.10 g/L/d; KNUA114, 5.18 ± 0.81 g/L/d; KNUA122, 5.07 ± 0.22 g/L/d) and heterotrophic conditions (glucose: 20 g L-1; biomass yield: KNUA104, 1.72 ± 0.26 g/L/d; KNUA114, 4.26 ± 0.27 g/L/d; KNUA122, 4.32 ± 0.32 g/L/d). All strains under mixotrophic and heterotrophic conditions were optimally cultured when 15-20 g L-1 initial glucose was provided. Although bioresourse productivity improved under both mixotrophic and heterotrophic conditions where mixotrophic conditions were found to be optimal as the yields of lipid and pigment were also enhanced. Protein content was less affected by the presence of light or the concentration of glucose. Under mixotrophic conditions, the highest lipid content (glucose: 15 g L-1; lipid content: 68.80 ± 0.54%) was obtained with Chlorella vulgaris KNUA104, and enhanced pigment productivity of Chlorella sorokiniana KNUA114 and KNUA122 (additional pigment yield obtained with 15 g L-1 glucose: KNUA 114, 0.33 ± 0.01 g L-1; KNUA122, 0.21 ± 0.01 g L-1). Also, saturated fatty acid (SFA) content was enhanced in all strains (SFA: KNUA104, 29.76 ± 1.31%; KNUA114, 37.01 ± 0.98%; KNUA122, 33.37 ± 0.17%) under mixotrophic conditions. These results suggest that mixotrophic cultivation of Chlorella vulgaris and Chlorella sorokiniana could improve biomass yield and the raw material quality of biomass.

7.
Plant Mol Biol ; 105(4-5): 365-383, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33206358

RESUMO

KEY MESSAGE: Enhanced glutathione content improves lateral root development by positively regulating the transcripts of root development genes responsive to glutathione treatment, thereby increasing the overall productivity of rice plants. Glutathione is primarily known as a cellular antioxidant molecule, but its role in lateral root development in rice plants has not been elucidated. Here, we have investigated its role in lateral root development of rice Oryza sativa L. Exogenous glutathione (GSH) promoted both the number and length of lateral roots in rice, and the GSH biosynthesis inhibitor buthionine sulfoximine (BSO) significantly reduced these parameters, compared to untreated plants. The inhibition by BSO was reversed with exogenous GSH. Transcript profiling by RNA-seq revealed that expression of the transcription factor genes DREB and ERF and the hormone-related genes AOS, LOX, JAZ, and SAUR were significantly downregulated in the BSO-treated plants and, in contrast, upregulated in plants treated with GSH and with GSH and BSO together. We generated OsGS-overexpressing transgenic plants in which the transgene is controlled by the abiotic-stress-inducible OsRab21 promoter to study the effect of endogenously increased GSH levels. In cold stress, transgenic rice plants enhanced stress tolerance and lateral root development by maintaining redox homeostasis and improving upregulating the expression of transcription factors and hormone-related genes involved in lateral root development. We observed improved root growth of OsGS-overexpressing plants in paddy fields compared to the wild-type controls. These traits may have alleviated transplanting stress during early growth in the field and accounted for the increased productivity. These results provide information and perspectives on the role of GSH in gene expression, lateral root development, and grain yield in rice.


Assuntos
Grão Comestível/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa/farmacologia , Oryza/genética , Raízes de Plantas/genética , Biomassa , Western Blotting , Butionina Sulfoximina/farmacologia , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Perfilação da Expressão Gênica/métodos , Glutationa/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Heliyon ; 6(7): e04447, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32743091

RESUMO

This study aims to characterize the potential of three strains of microalgal species (Chlorella sorokiniana KNUA114 and KNUA122; C. vulgaris KNUA104) for use as feedstock, based on their fatty acid compositions. Each strain was molecularly identified using four marker genes (ITS, SSU, rbcL, and tufA) and phylogenetically characterized. C. sorokiniana and C. vulgaris collected from Ulleung Island, South Korea, were homologous with other known species groups. Samples' fatty acid components were measured using GC/MS analysis in growth temperatures of 10 °C, 25 °C, and 35 °C. The growth rate of C. sorokiniana strains was higher than that of C. vulgaris under high-temperature conditions, confirming the potential industrial applicability of the former as feedstock material. Additionally, saturated fatty acid contents and productivities increased as biological resources of the C. sorokiniana strains were higher than those of C. vulgaris under high light intensity and temperature conditions. These results suggest that the fatty acid components of C. sorokiniana strains may potentially be used as biological resources (e.g., feedstock).

9.
Front Plant Sci ; 11: 231, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194605

RESUMO

An excess of reactive oxygen species (ROS) can cause severe oxidative damage to cellular components in photosynthetic cells. Antioxidant systems, such as the glutathione (GSH) pools, regulate redox status in cells to guard against such damage. Dehydroascorbate reductase (DHAR, EC 1.8.5.1) catalyzes the glutathione-dependent reduction of oxidized ascorbate (dehydroascorbate) and contains a redox active site and glutathione binding-site. The DHAR gene is important in biological and abiotic stress responses involving reduction of the oxidative damage caused by ROS. In this study, transgenic Synechococcus elongatus PCC 7942 (TA) was constructed by cloning the Oryza sativa L. japonica DHAR (OsDHAR) gene controlled by an isopropyl ß-D-1-thiogalactopyranoside (IPTG)-inducible promoter (Ptrc) into the cyanobacterium to study the functional activities of OsDHAR under oxidative stress caused by hydrogen peroxide exposure. OsDHAR expression increased the growth of S. elongatus PCC 7942 under oxidative stress by reducing the levels of hydroperoxides and malondialdehyde (MDA) and mitigating the loss of chlorophyll. DHAR and glutathione S-transferase activity were higher than in the wild-type S. elongatus PCC 7942 (WT). Additionally, overexpression of OsDHAR in S. elongatus PCC 7942 greatly increased the glutathione (GSH)/glutathione disulfide (GSSG) ratio in the presence or absence of hydrogen peroxide. These results strongly suggest that DHAR attenuates deleterious oxidative effects via the glutathione (GSH)-dependent antioxidant system in cyanobacterial cells. The expression of heterologous OsDHAR in S. elongatus PCC 7942 protected cells from oxidative damage through a GSH-dependent antioxidant system via GSH-dependent reactions at the redox active site and GSH binding site residues during oxidative stress.

10.
Front Bioeng Biotechnol ; 8: 588210, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392165

RESUMO

Bacterial and algal floc formation was induced by inoculating three species of wastewater-derived bacteria (Melaminivora jejuensis, Comamonas flocculans, and Escherichia coli) into algal cultures (Chlorella sorokiniana). Bacterial and algal flocs formed in algal cultures inoculated with M. jejuensis and C. flocculans, and these flocs showed higher sedimentation rates than pure algal culture. The floc formed by M. jejuensis (4988.46 ± 2589.81 µm) was 10-fold larger than the floc formed by C. flocculans (488.60 ± 226.22 µm), with a three-fold higher sedimentation rate (M. jejuensis, 91.08 ± 2.32% and C. flocculans, 32.55 ± 6.33%). Biomass and lipid productivity were improved with M. jejuensis inoculation [biomass, 102.25 ± 0.35 mg/(L·day) and 57.80 ± 0.20 mg/(L·day)] compared with the productivity obtained under pure algal culture conditions [biomass, 78.00 ± 3.89 mg/(L·day) and lipids, 42.26 ± 2.11 mg/(L·day)]. Furthermore, the fatty acid composition of the biomass produced under pure algal culture conditions was mainly composed of C16:0 (43.67%) and C18:2 (45.99%), whereas the fatty acid composition of the biomass produced by M. jejuensis was mainly C16:0 (31.80%), C16:1 (24.45%), C18:1 (20.23%), and C18:2 (16.11%). These results suggest the possibility of developing an efficient method for harvesting microalgae using M. jejuensis and provide information on how to improve biomass productivity using floc-forming bacteria.

11.
Pol J Microbiol ; 68(4): 527-539, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31880896

RESUMO

Ulleungdo and Dokdo are volcanic islands with an oceanic climate located off the eastern coast of South Korea. In the present study, we used barcoded Illumina MiSeq to analyze eukaryotic microalgal genera collected from Seonginbong, the highest peak on Ulleungdo, and from groundwater sites on Dongdo and Seodo Islands, which are part of Dokdo. Species richness was significantly greater in the Seonginbong samples than in the Dongdo and Seodo samples, with 834 operational taxonomic units (OTUs) identified from Seonginbong compared with 203 OTUs and 182 OTUs from Dongdo and Seodo, respectively. Taxonomic composition analysis was also used to identify the dominant microalgal phyla at each of the three sites, with Chlorophyta (green algae) the most abundant phyla on Seonginbong and Dongdo, and Bacillariophyta (diatoms) the most abundant on Seodo. These findings suggest that differences in the abundances of Chlorophyta and Bacillariophyta species in the Seonginbong, Dongdo, and Seodo samples are due to variations in species richness and freshwater resources at each sampling location. To the best of our knowledge, this is the first report to detail freshwater microalgal communities on Ulleungdo and Dokdo. As such, the number of species identified in the Seonginbong, Dongdo, and Seodo samples might be an indicator of the ecological differences among these sites and varying characteristics of their microbial communities. Information regarding the microalgal communities also provides a basis for understanding the ecological interactions between microalgae species and other eukaryotic microorganisms.Ulleungdo and Dokdo are volcanic islands with an oceanic climate located off the eastern coast of South Korea. In the present study, we used barcoded Illumina MiSeq to analyze eukaryotic microalgal genera collected from Seonginbong, the highest peak on Ulleungdo, and from groundwater sites on Dongdo and Seodo Islands, which are part of Dokdo. Species richness was significantly greater in the Seonginbong samples than in the Dongdo and Seodo samples, with 834 operational taxonomic units (OTUs) identified from Seonginbong compared with 203 OTUs and 182 OTUs from Dongdo and Seodo, respectively. Taxonomic composition analysis was also used to identify the dominant microalgal phyla at each of the three sites, with Chlorophyta (green algae) the most abundant phyla on Seonginbong and Dongdo, and Bacillariophyta (diatoms) the most abundant on Seodo. These findings suggest that differences in the abundances of Chlorophyta and Bacillariophyta species in the Seonginbong, Dongdo, and Seodo samples are due to variations in species richness and freshwater resources at each sampling location. To the best of our knowledge, this is the first report to detail freshwater microalgal communities on Ulleungdo and Dokdo. As such, the number of species identified in the Seonginbong, Dongdo, and Seodo samples might be an indicator of the ecological differences among these sites and varying characteristics of their microbial communities. Information regarding the microalgal communities also provides a basis for understanding the ecological interactions between microalgae species and other eukaryotic microorganisms.


Assuntos
Microalgas/isolamento & purificação , Clorófitas/classificação , Clorófitas/genética , Diatomáceas/classificação , Diatomáceas/genética , Diatomáceas/isolamento & purificação , Água Doce/análise , Ilhas , Microalgas/classificação , Microalgas/genética , Filogenia , Análise de Sequência de DNA
12.
Front Plant Sci ; 10: 1752, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32117337

RESUMO

Abscisic acid-, stress-, and ripening-induced (ASR) genes are involved in responding to abiotic stresses, but their precise roles in enhancing grain yield under stress conditions remain to be determined. We cloned a rice (Oryza sativa) ASR gene, OsASR1, and characterized its function in rice plants. OsASR1 expression was induced by abscisic acid (ABA), salt, and drought treatments. Transgenic rice plants overexpressing OsASR1 displayed improved water regulation under salt and drought stresses, which was associated with osmolyte accumulation, improved modulation of stomatal closure, and reduced transpiration rates. OsASR1-overexpressing plants were hypersensitive to exogenous ABA and accumulated higher endogenous ABA levels under salt and drought stresses, indicating that OsASR1 is a positive regulator of the ABA signaling pathway. The growth of OsASR1-overexpressing plants was superior to that of wild-type (WT) plants under paddy field conditions when irrigation was withheld, likely due to improved modulation of stomatal closure via modified ABA signaling. The transgenic plants had higher grain yields than WT plants for four consecutive generations. We conclude that OsASR1 has a crucial role in ABA-mediated regulation of stomatal closure to conserve water under salt- and drought-stress conditions, and OsASR1 overexpression can enhance salinity and drought tolerance, resulting in improved crop yields.

13.
Front Plant Sci ; 9: 1848, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619416

RESUMO

Cyanobacterial 2-Cys peroxiredoxin (thioredoxin peroxidase, TPX) comprises a family of thiol antioxidant enzymes critically involved in cell survival under oxidative stress. In our previous study, a putative TPX was identified using a proteomics analysis of rice (Oryza sativa L. japonica, OsTPX) seedlings exposed to oxidative stress. This OsTPX gene is structurally similar to the Synechococcus elongatus TPX gene in the highly conserved redox-active disulfide bridge (Cys114, Cys236) and other highly conserved regions. In the present study, the OsTPX gene was cloned into rice plants and S. elongatus PCC 7942 strain to study hydrogen peroxide (H2O2) stress responses. The OsTPX gene expression was confirmed using semi-quantitative RT-PCR and western blot analysis. The OsTPX gene expression increased growth under oxidative stress by decreasing reactive oxygen species and malondialdehyde level. Additionally, the OsTPX gene expression in S. elongatus PCC 7942 (OT) strain exhibited a reduced loss of chlorophyll and enhanced photosynthesis efficiency under H2O2 stress, thereby increasing biomass yields twofold compared with that of the control wild type (WT) strain. Furthermore, redox balance, ion homeostasis, molecular chaperone, and photosynthetic systems showed upregulation of some genes in the OT strain than in the WT strain by RNA-Seq analysis. Thus, OsTPX gene expression enhances oxidative stress tolerance by increasing cell defense regulatory networks through the cellular redox homeostasis in the rice plants and S. elongatus PCC 7942.

14.
Biotechnol Lett ; 39(10): 1499-1507, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28667417

RESUMO

OBJECTIVES: To improve the oxidative stress tolerance, biomass yield, and ascorbate/dehydroascorbate (AsA/DHA) ratio of Synechococcus elongatus PCC 7942 in the presence of H2O2, by heterologous expression of the dehydroascorbate reductase (DHAR) gene from Brassica juncea (BrDHAR). RESULTS: Under H2O2 stress, overexpression of BrDHAR in the transgenic strain (BrD) of S. elongatus greatly increased the AsA/DHA ratio. As part of the AsA recycling system, the oxidative stress response induced by reactive oxygen species was enhanced, and intracellular H2O2 level decreased. In addition, under H2O2 stress conditions, the BrD strain displayed increased growth rate and biomass, as well as higher chlorophyll content and deeper pigmentation than did wild-type and control strains. CONCLUSION: By maintaining the AsA pool and redox homeostasis, the heterologous expression of BrDHAR increased S. elongatus tolerance to H2O2 stress, improving the biomass yield under these conditions. The results suggest that the BrD strain of S. elongatus, with its ability to attenuate the deleterious effects of ROS caused by environmental stressors, could be a promising platform for the generation of biofuels and other valuable bioproducts.


Assuntos
Mostardeira/enzimologia , Oxirredutases/genética , Oxirredutases/metabolismo , Synechococcus/crescimento & desenvolvimento , Ácido Ascórbico/metabolismo , Biomassa , Clorofila/metabolismo , Clonagem Molecular , Ácido Desidroascórbico , Peróxido de Hidrogênio/metabolismo , Mostardeira/genética , Estresse Oxidativo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Synechococcus/genética
15.
J Plant Physiol ; 215: 39-47, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28527337

RESUMO

Reactive oxygen species, which increase under various environmental stresses, have deleterious effects on plants. An important antioxidant, glutathione, is used to detoxify reactive oxygen species in plant cells and is mainly produced by two enzymes: gamma-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase (GS). To evaluate the functional roles of the glutathione synthetase gene (OsGS) in rice, we generated four independent transgenic rice plants (TG1-TG4) that overexpressed OsGS under the control of the constitutively expressed OsCc1 promoter. When grown under natural paddy field conditions, the TG rice plants exhibited greater growth development, higher chlorophyll content, and higher GSH/GSSH ratios than control wild-type (WT) rice plants. Subsequently, the TG rice plants enhanced redox homeostasis by preventing hydroperoxide-mediated membrane damage, which improved their adaptation to environmental stresses. As a result, TG rice plants improved rice grain yield and total biomass following increases in panicle number and number of spikelets per panicle, despite differences in climate during the cultivation periods of 2014 and 2015. Overall, our results indicate that OsGS overexpression improved redox homeostasis by enhancing the glutathione pool, which resulted in greater tolerance to environmental stresses in the paddy fields.


Assuntos
Oryza/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
17.
Sci Rep ; 6: 33903, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27652777

RESUMO

Ascorbic acid (AsA) maintains redox homeostasis by scavenging reactive oxygen species from prokaryotes to eukaryotes, especially plants. The enzyme monodehydroascorbate reductase (MDHAR) regenerates AsA by catalysing the reduction of monodehydroascorbate, using NADH or NADPH as an electron donor. The detailed recycling mechanism of MDHAR remains unclear due to lack of structural information. Here, we present the crystal structures of MDHAR in the presence of cofactors, nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+), and complexed with AsA as well as its analogue, isoascorbic acid (ISD). The overall structure of MDHAR is similar to other iron-sulphur protein reductases, except for a unique long loop of 63-80 residues, which seems to be essential in forming the active site pocket. From the structural analysis and structure-guided point mutations, we found that the Arg320 residue plays a major substrate binding role, and the Tyr349 residue mediates electron transfer from NAD(P)H to bound substrate via FAD. The enzymatic activity of MDHAR favours NADH as an electron donor over NADPH. Our results show, for the first time, structural insights into this preference. The MDHAR-ISD complex structure revealed an alternative binding conformation of ISD, compared with the MDHAR-AsA complex. This implies a broad substrate (antioxidant) specificity and resulting greater protective ability of MDHAR.

18.
PLoS One ; 11(7): e0158841, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27392090

RESUMO

Monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) is an important enzyme for ascorbate recycling. To examine whether heterologous expression of MDHAR from Oryza sativa (OsMDHAR) can prevent the deleterious effects of unfavorable growth conditions, we constructed a transgenic yeast strain harboring a recombinant plasmid carrying OsMDHAR (p426GPD::OsMDHAR). OsMDHAR-expressing yeast cells displayed enhanced tolerance to hydrogen peroxide by maintaining redox homoeostasis, proteostasis, and the ascorbate (AsA)-like pool following the accumulation of antioxidant enzymes and molecules, metabolic enzymes, and molecular chaperones and their cofactors, compared to wild-type (WT) cells carrying vector alone. The addition of exogenous AsA or its analogue isoascorbic acid increased the viability of WT and ara2Δ cells under oxidative stress. Furthermore, the survival of OsMDHAR-expressing cells was greater than that of WT cells when cells at mid-log growth phase were exposed to high concentrations of ethanol. High OsMDHAR expression also improved the fermentative capacity of the yeast during glucose-based batch fermentation at a standard cultivation temperature (30°C). The alcohol yield of OsMDHAR-expressing transgenic yeast during fermentation was approximately 25% (0.18 g·g-1) higher than that of WT yeast. Accordingly, OsMDHAR-expressing transgenic yeast showed prolonged survival during the environmental stresses produced during fermentation. These results suggest that heterologous OsMDHAR expression increases tolerance to reactive oxygen species-induced oxidative stress by improving cellular redox homeostasis and improves survival during fermentation, which enhances fermentative capacity.


Assuntos
Expressão Gênica , NADH NADPH Oxirredutases , Organismos Geneticamente Modificados , Oryza/genética , Proteínas de Plantas , Saccharomyces cerevisiae , Estresse Fisiológico , Etanol/metabolismo , NADH NADPH Oxirredutases/biossíntese , NADH NADPH Oxirredutases/genética , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/metabolismo , Oryza/enzimologia , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
19.
Biochem Biophys Res Commun ; 477(3): 395-400, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27329814

RESUMO

The cyanobacterial aldehyde deformylating oxygenase (cADO) is a key enzyme that catalyzes the unusual deformylation of aliphatic aldehydes for alkane biosynthesis and can be applied to the production of biofuel in vitro and in vivo. In this study, we determined crystal structures of two ADOs from Limnothrix sp. KNUA012 (LiADO) and Oscillatoria sp. KNUA011 (OsADO). The structures of LiADO and OsADO resembled those of typical cADOs, consisting of eight α-helices found in ferritin-like di-iron proteins. However, structural comparisons revealed that while the LiADO active site was vacant of iron and substrates, the OsADO active site was fully occupied, containing both a coordinated metal ion and substrate. Previous reports indicated that helix 5 is capable of adopting two distinct conformations depending upon the existence of bound iron. We observed that helix 5 of OsADO with an iron bound in the active site presented as a long helix, whereas helix 5 of LiADO, which lacked iron in the active site, presented two conformations (one long and two short helices), indicating that an equilibrium exists between the two states in solution. Furthermore, acquisition of a structure having a fully occupied active site is unique in the absence of higher iron concentrations as compared with other cADO structures, wherein low affinity for iron complicates the acquisition of crystal structures with bound iron. An in-depth analysis of the ADO apo-enzyme, the enzyme with substrate bound, and the enzyme with both iron and substrate bound provided novel insight into substrate-binding modes in the absence of a coordinated metal ion and suggested a separate two-step binding mechanism for substrate and iron co-factors. Moreover, our results provided a comprehensive structural basis for conformational changes induced by binding of the substrate and co-factor.


Assuntos
Aldeídos/metabolismo , Cianobactérias/enzimologia , Oxigenases/química , Sequência de Aminoácidos , Domínio Catalítico , Clonagem Molecular , Oxigenases/genética , Oxigenases/metabolismo , Homologia de Sequência de Aminoácidos
20.
Sci Rep ; 6: 19498, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26775680

RESUMO

Dehydroascorbate reductase (DHAR) is a key enzyme involved in the recycling of ascorbate, which catalyses the glutathione (GSH)-dependent reduction of oxidized ascorbate (dehydroascorbate, DHA). As a result, DHAR regenerates a pool of reduced ascorbate and detoxifies reactive oxygen species (ROS). In previous experiments involving transgenic rice, we observed that overexpression of DHAR enhanced grain yield and biomass. Since the structure of DHAR is not available, the enzymatic mechanism is not well-understood and remains poorly characterized. To elucidate the molecular basis of DHAR catalysis, we determined the crystal structures of DHAR from Oryza sativa L. japonica (OsDHAR) in the native, ascorbate-bound, and GSH-bound forms and refined their resolutions to 1.9, 1.7, and 1.7 Å, respectively. These complex structures provide the first information regarding the location of the ascorbate and GSH binding sites and their interacting residues. The location of the ascorbate-binding site overlaps with the GSH-binding site, suggesting a ping-pong kinetic mechanism for electron transfer at the common Cys20 active site. Our structural information and mutagenesis data provide useful insights into the reaction mechanism of OsDHAR against ROS-induced oxidative stress in rice.


Assuntos
Ácido Ascórbico/química , Ácido Ascórbico/metabolismo , Oryza/metabolismo , Oxirredução , Oxirredutases/química , Oxirredutases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Expressão Gênica , Glutationa/química , Glutationa/genética , Redes e Vias Metabólicas , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...