Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(32)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38670125

RESUMO

Recent studies have reported that lead-halide perovskites are the most efficient energy-harvesting materials. Regardless of their high-output energy and structural stability, lead-based products have risk factors due to their toxicity. Therefore, lead-free perovskites that offer green energy are the expected alternatives. We have taken CsGeX3(X = Cl, Br, and I) as lead-free halide perovskites despite knowing the low power conversion rate. Herein, we have tried to study the mechanisms of enhancement of energy-harvesting capabilities involving an interplay between structure and electronic properties. A density functional theory simulation of these materials shows a decrease in the band gaps, lattice parameters, and volumes with increasing applied pressure. We report the high piezoelectric responses and high electro-mechanical conversion rates, which are intriguing for generating electricity through mechanical stress.

2.
J Phys Condens Matter ; 36(6)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37875142

RESUMO

In this study, we explored the electronic and thermoelectric (TE) properties of the Na-based Quaternary Heusler Alloys (QHAs) NaHfXGe (X = Co, Rh, Ir) using density functional theory (DFT). We performed the spin-polarized DFT calculations at the general gradient approximation (GGA) level and confirmed the ground state non-magnetic configuration of NaHfXGe. The mechanical and thermodynamical stabilities are analyzed and discussed to validate the stability by calculating the elastic constant and phonon dispersion curve. A thorough investigation on the electronic properties are carried out by performing the GGA, GGA+U, and GGA+SOC formalism where we report the semi-conducting characteristic of NaHfCoGe and NaHfRhGe QHAs. However, NaHfIrGe is predicted to be a non-magnetic metal. From the calculated optical properties we found that the most active optical absorption occurs within the vis-UV region withα>105 cm-1, therefore the studied QHAs are proposed to be a promising optoelectronic materials. The results of the thermodynamic properties have shown that NaHfXGe follows Debye's low-temperature specific heat law and the classical thermodynamics of the Dulong-Petit law at high temperatures. The calculated TE efficiency using GGA+SOC formalism atT= 1200 K are ZT∼1.22 and 0.57 for NaHfCoGe and NaHfRhGe, suggesting that these materials are potential TE materials to operate at high temperature.

3.
ACS Omega ; 8(7): 6895-6907, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36844561

RESUMO

Herein, we systematically studied the electronic, optical, and mechanical properties of a hydrogenated (6,0) single-walled carbon nanotube [(6,0) h-SWCNT] under applied uniaxial stress from first-principles density functional theory (DFT) and molecular dynamics (MD) simulation. We have applied the uniaxial stress range from -18 to 22 GPa on the (6,0) h-SWCNT (- sign indicates compressive and + indicates tensile stress) along the tube axes. Our system was found to be an indirect semiconductor (Γ-Δ), with a band gap value of ∼0.77 eV within the linear combination of atomic orbitals (LCAO) method using a GGA-1/2 exchange-correlation approximation. The band gap for (6,0) h-SWCNT significantly varies with the application of stress. The indirect to direct band gap transition was observed under compressive stress (-14 GPa). The strained (6,0) h-SWCNT showed a strong optical absorption in the infrared region. Application of external stress enhanced the optically active region from infrared to Vis with maximum intensity within the Vis-IR region, making it a promising candidate for optoelectronic devices. Ab initio molecular dynamics (AIMD) simulation has been used to study the elastic properties of the (6,0) h-SWCNT which has a strong influence under applied stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...