Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 25(9): 2048-2061, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35925978

RESUMO

A narrative in ecology is that prey modify traits to reduce predation risk, and the trait modification has costs large enough to cause ensuing demographic, trophic and ecosystem consequences, with implications for conservation, management and agriculture. But ecology has a long history of emphasising that quantifying the importance of an ecological process ultimately requires evidence linking a process to unmanipulated field patterns. We suspected that such process-linked-to-pattern (PLP) studies were poorly represented in the predation risk literature, which conflicts with the confidence often given to the importance of risk effects. We reviewed 29 years of the ecological literature which revealed that there are well over 4000 articles on risk effects. Of those, 349 studies examined risk effects on prey fitness measures or abundance (i.e., non-consumptive effects) of which only 26 were PLP studies, while 275 studies examined effects on other interacting species (i.e., trait-mediated indirect effects) of which only 35 were PLP studies. PLP studies were narrowly focused taxonomically and included only three that examined unmanipulated patterns of prey abundance. Before concluding a widespread and influential role of predation-risk effects, more attention must be given to linking the process of risk effects to unmanipulated patterns observed across diverse ecosystems.


Assuntos
Ecossistema , Comportamento Predatório , Animais , Cadeia Alimentar
2.
Ecology ; 101(12): e03152, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32736416

RESUMO

The very presence of predators can strongly influence flexible prey traits such as behavior, morphology, life history, and physiology. In a rapidly growing body of literature representing diverse ecological systems, these trait (or "fear") responses have been shown to influence prey fitness components and density, and to have indirect effects on other species. However, this broad and exciting literature is burdened with inconsistent terminology that is likely hindering the development of inclusive frameworks and general advances in ecology. We examine the diverse terminology used in the literature, and discuss pros and cons of the many terms used. Common problems include the same term being used for different processes, and many different terms being used for the same process. To mitigate terminological barriers, we developed a conceptual framework that explicitly distinguishes the multiple predation-risk effects studied. These multiple effects, along with suggested standardized terminology, are risk-induced trait responses (i.e., effects on prey traits), interaction modifications (i.e., effects on prey-other-species interactions), nonconsumptive effects (i.e., effects on the fitness and density of the prey), and trait-mediated indirect effects (i.e., the effects on the fitness and density of other species). We apply the framework to three well studied systems to highlight how it can illuminate commonalities and differences among study systems. By clarifying and elucidating conceptually similar processes, the framework and standardized terminology can facilitate communication of insights and methodologies across systems and foster cross-disciplinary perspectives.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Animais , Ecossistema , Medo , Fenótipo
3.
Ecology ; 101(7): e03041, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32134508

RESUMO

The ability to predict how predators structure ecosystems has been shown to depend on identifying both consumptive effects (CEs) and nonconsumptive effects (NCEs) of predators on prey fitness. Prey populations may also be affected by interactions between multiple predators across life stages of the prey and by environmental factors such as disturbance. However, the intersection of these multiple drivers of prey dynamics has yet to be empirically evaluated. We addressed this knowledge gap using eastern oysters (Crassostrea virginica), a species known to suffer NCEs, as the focal prey. Over 4 months, we manipulated orthogonally the life stage (none, juvenile, adult, or both) at which oysters experienced simulated predation (CE) and exposure to olfactory cues of a juvenile oyster predator (crab), adult predator (conch), sequentially the crab and then the conch, or none. We replicated this experiment at three sites along an environmental gradient in a Florida (USA) estuary. For both juvenile and adult oysters, survival was reduced solely by CEs, and variation in growth was best explained by among-site variation in water flow, with a much smaller and negative effect of predator cue. Adults exposed to conch cue exhibited reduced growth (an NCE), but this effect was outweighed by a positive CE on growth: Surviving oysters grew faster at lower densities. Finally, conch cue reduced larval settlement (another NCE), but this was swamped by among-site variation in larval supply. This research highlights how strong environmental gradients and predator CEs may outweigh the influence of NCEs, even in prey known to respond to predator cues. These findings serve as a cautionary tale for the importance of evaluating NCE processes over temporal scales and across environmental gradients relevant to prey demography.


Assuntos
Braquiúros , Cadeia Alimentar , Animais , Ecossistema , Florida , Comportamento Predatório
4.
Ecology ; 101(2): e02921, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31652333

RESUMO

Although species interactions are often assumed to be strongest at small spatial scales, they can interact with regional environmental factors to modify food web dynamics across biogeographic scales. The eastern oyster (Crassostrea virginica) is a widespread foundational species of both ecological and economic importance. The oyster and its associated assemblage of fish and macroinvertebrates is an ideal system to investigate how regional differences in environmental variables influence trophic interactions and food web structure. We quantified multiple environmental factors, oyster reef properties, associated species, and trophic guilds on intertidal oyster reefs within 10 estuaries along 900 km of the southeastern United States. Geographical gradients in fall water temperature and mean water depth likely influenced regional (i.e., the northern, central and southern sections of the SAB) variation in oyster reef food web structure. Variation in the biomass of mud crabs, an intermediate predator, was mostly (84.1%) explained by reefs within each site, and did not differ substantially among regions; however, regional variation in the biomass of top predators and of juvenile oysters also contributed to biogeographic variation in food web structure. In particular, region explained almost half (40.2%) of the variation in biomass of predators of blue crab, a top predator that was prevalent only in the central region where water depth was greater. Field experiments revealed that oyster mortality due to predation was greatest in the central region, suggesting spatial variation in the importance of trophic cascades. However, high oyster recruitment in the middle region probably compensates for this enhanced predation, potentially explaining why relatively less variation (17.9%) in oyster cluster biomass was explained by region. Region also explained over half of the variation in biomass of mud crab predators (55.2%), with the southern region containing almost an order of magnitude more biomass than the other two regions. In this region, higher water temperatures in the fall corresponded with higher biomass of fish that consume mud crabs and of fish that consume juvenile and forage fish, whereas biomas of their prey (mud crabs and juvenile and forage fish, respectively) was generally low in the southern region. Collectively, these results show how environmental gradients interact with trophic cascades to structure food webs associated with foundation species across biogeographic regions.


Assuntos
Braquiúros , Crassostrea , Animais , Peixes , Cadeia Alimentar , Comportamento Predatório
5.
Ecol Appl ; 29(6): e01940, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31148283

RESUMO

The rapid growth of the aquaculture industry to meet global seafood demand offers both risks and opportunities for resource management and conservation. In particular, hatcheries hold promise for stock enhancement and restoration, yet cultivation practices may lead to enhanced variation between populations at the expense of variation within populations, with uncertain implications for performance and resilience. To date, few studies have assessed how production techniques impact genetic diversity and population structure, as well as resultant trait variation in and performance of cultivated offspring. We collaborated with a commercial hatchery to produce multiple cohorts of the eastern oyster (Crassostrea virginica) from field-collected broodstock using standard practices. We recorded key characteristics of the broodstock (male : female ratio, effective population size), quantified the genetic diversity of the resulting cohorts, and tested their trait variation and performance across multiple field sites and experimental conditions. Oyster cohorts produced under the same conditions in a single hatchery varied almost twofold in genetic diversity. In addition, cohort genetic diversity was a significant positive predictor of oyster performance traits, including initial size and survival in the field. Oyster cohorts produced in the hatchery had lower within-cohort genetic variation and higher among-cohort genetic structure than adults surveyed from the same source sites. These findings are consistent with "sweepstakes reproduction" in oysters, even when manually spawned. A readily measured characteristic of broodstock, the ratio of males to females, was positively correlated with within-cohort genetic diversity of the resulting offspring. Thus, this metric may offer a tractable way both to meet short-term production goals for seafood demand and to ensure the capacity of hatchery-produced stock to achieve conservation objectives, such as the recovery of self-sustaining wild populations.


Assuntos
Aquicultura , Crassostrea , Animais , Variação Biológica da População , Feminino , Variação Genética , Masculino , Densidade Demográfica
6.
Ecology ; 99(4): 885-895, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29352463

RESUMO

Environmental factors such as temperature can affect the geographical distribution of species directly by exceeding physiological tolerances, or indirectly by altering physiological rates that dictate the sign and strength of species interactions. Although the direct effects of environmental conditions are relatively well studied, the effects of environmentally mediated species interactions have garnered less attention. In this study, we examined the temperature dependency of size-structured intraguild predation (IGP) between native blue crabs (Callinectes sapidus, the IG predator) and invasive green crabs (Carcinus maenas, the IG prey) to evaluate how the effect of temperature on competitive and predatory rates may influence the latitudinal distribution of these species. In outdoor mesocosm experiments, we quantified interactions between blue crabs, green crabs, and shared prey (mussels) at three temperatures reflective of those across their range, using two size classes of blue crab. At low temperatures, green crabs had a competitive advantage and IGP by blue crabs on green crabs was low. At high temperatures, size-matched blue and green crabs were competitively similar, large blue crabs had a competitive advantage, and IGP on green crabs was high. We then used parameter values generated from these experiments (temperature- and size-dependent attack rates and handling times) in a size-structured IGP model in which we varied IGP attack rate, maturation rate of the blue crab from the non-predatory to predatory size class, and resource carrying capacity at each of the three temperatures. In the model, green crabs were likely to competitively exclude blue crabs at low temperature, whereas blue crabs were likely to competitively and consumptively exclude green crabs at higher temperatures, particularly when resource productivities and rates of IGP were high. While many factors may play a role in delimiting species ranges, our results suggest that temperature-dependent interactions can influence local coexistence and are worth considering when developing mechanistic species distribution models and evaluating responses to environmental change.


Assuntos
Braquiúros , Animais , Conservação dos Recursos Naturais , Cadeia Alimentar , Comportamento Predatório , Temperatura
7.
Ecology ; 98(7): 1884-1895, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28418098

RESUMO

Environmental perturbations can strongly affect community processes and ecosystem functions by acting primarily as a subsidy that increases productivity, a stress that decreases productivity, or both, with the predominant effect potentially shifting from subsidy to stress as the overall intensity of the perturbation increases. While perturbations are often considered along a single axis of intensity, they consist of multiple components (e.g., magnitude, frequency, and duration) that may not have equivalent stress and/or subsidy effects. Thus, different combinations of perturbation components may elicit community and ecosystem responses that differ in strength and/or direction (i.e., stress or subsidy) even if they reflect a similar overall perturbation intensity. To assess the independent and interactive effects of perturbation components, we experimentally manipulated the magnitude, frequency, and duration of wrack deposition, a common stress-subsidy in a variety of coastal systems. The effects of wrack perturbation on salt marsh community and ecosystem properties were assessed both in the short-term (at the end of a 12-week experimental manipulation) and long-term (6 months after the end of the experiment). In the short-term, plants and associated benthic invertebrates exhibited primarily stress-based responses to wrack perturbation. The extent of these stress effects on density of the dominant plant Spartina alterniflora, total plant percent cover, invertebrate abundance, and sediment oxygen availability were largely determined by perturbation duration. Yet, higher nitrogen content of Spartina, which indicates a subsidy effect of wrack, was influenced primarily by perturbation magnitude in the short-term. In the longer term, perturbation magnitude determined the extent of both stress and subsidy effects of wrack perturbation, with lower subordinate plant percent cover and snail density, and higher Spartina nitrogen content in high wrack biomass treatments. However, stress effects on the marsh community were generally less pronounced 6 months after the wrack perturbation, indicating capacity for recovery. Our results demonstrate that individual perturbation components can determine the degree to which its effects on the community elicit primarily stress- and/or subsidy-based responses. Further, the nature and extent of stress-subsidy effects can change over time, depending on species' relative ability to tolerate and/or recover from perturbation.


Assuntos
Poaceae/fisiologia , Estresse Fisiológico , Áreas Alagadas , Animais , Biomassa , Ecossistema , Nitrogênio
8.
Ecol Evol ; 7(2): 697-709, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28116064

RESUMO

Functional trait variation within and across populations can strongly influence population, community, and ecosystem processes, but the relative contributions of genetic vs. environmental factors to this variation are often not clear, potentially complicating conservation and restoration efforts. For example, local adaptation, a particular type of genetic by environmental (G*E) interaction in which the fitness of a population in its own habitat is greater than in other habitats, is often invoked in management practices, even in the absence of supporting evidence. Despite increasing attention to the potential for G*E interactions, few studies have tested multiple populations and environments simultaneously, limiting our understanding of the spatial consistency in patterns of adaptive genetic variation. In addition, few studies explicitly differentiate adaptation in response to predation from other biological and environmental factors. We conducted a reciprocal transplant experiment of first-generation eastern oyster (Crassostrea virginica) juveniles from six populations across three field sites spanning 1000 km in the southeastern Atlantic Bight in both the presence and absence of predation to test for G*E variation in this economically valuable and ecologically important species. We documented significant G*E variation in survival and growth, yet there was no evidence for local adaptation. Condition varied across oyster cohorts: Offspring of northern populations had better condition than offspring from the center of our region. Oyster populations in the southeastern Atlantic Bight differ in juvenile survival, growth, and condition, yet offspring from local broodstock do not have higher survival or growth than those from farther away. In the absence of population-specific performance information, oyster restoration and aquaculture may benefit from incorporating multiple populations into their practices.

9.
Ecology ; 98(3): 656-667, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27987303

RESUMO

Predators can influence prey traits and behavior (nonconsumptive effects [NCEs]), often with cascading effects for basal resources and ecosystem function. But critiques of NCE experiments suggest that their duration and design produce results that describe the potential importance of NCEs rather than their actual importance. In light of these critiques, we re-evaluated a toadfish (predator), crab (prey), and oyster (resource) NCE-mediated trophic cascade. In a 4-month field experiment, we varied toadfish cue (NCE) and crab density (approximating variation in predator consumptive effects, CE). Toadfish initially benefitted oyster survival by causing crabs to reduce consumption. But this NCE weakened over time (possibly due to prey hunger), so that after 2 months, crab density (CE) dictated oyster survivorship, regardless of cue. However, the NCE ultimately re-emerged on reefs with a toadfish cue, increasing oyster survivorship. At no point did the effect of toadfish cue on mud crab foraging behavior alter oyster population growth or sediment organic matter on the reef, which is a measure of benthic-pelagic coupling. Instead, both decreased with increasing crab density. Thus, within a system shown to exhibit strong NCEs in short-term experiments (days) our study supported predictions from theoretical models: (a) within the generation of individual prey, the relative influence of NCEs appears to cycle over longer time periods (months); and (b) predator CEs, not NCEs, drive longer-term resource dynamics and ecosystem function. Thus, our study implies that the impacts of removing top predators via activities such as hunting and overfishing will cascade to basal resources and ecosystem properties primarily through density-mediated interactions.


Assuntos
Ecossistema , Cadeia Alimentar , Comportamento Predatório , Animais , Braquiúros , Ostreidae , Dinâmica Populacional , Crescimento Demográfico
10.
Oecologia ; 183(1): 139-149, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27722800

RESUMO

Not all hosts, communities or environments are equally hospitable for parasites. Direct and indirect interactions between parasites and their predators, competitors and the environment can influence variability in host exposure, susceptibility and subsequent infection, and these influences may vary across spatial scales. To determine the relative influences of abiotic, biotic and host characteristics on probability of infection across both local and estuary scales, we surveyed the oyster reef-dwelling mud crab Eurypanopeus depressus and its parasite Loxothylacus panopaei, an invasive castrating rhizocephalan, in a hierarchical design across >900 km of the southeastern USA. We quantified the density of hosts, predators of the parasite and host, the host's oyster reef habitat, and environmental variables that might affect the parasite either directly or indirectly on oyster reefs within 10 estuaries throughout this biogeographic range. Our analyses revealed that both between and within estuary-scale variation and host characteristics influenced L. panopaei prevalence. Several additional biotic and abiotic factors were positive predictors of infection, including predator abundance and the depth of water inundation over reefs at high tide. We demonstrate that in addition to host characteristics, biotic and abiotic community-level variables both serve as large-scale indicators of parasite dynamics.


Assuntos
Meio Ambiente , Parasitos , Animais , Braquiúros/parasitologia , Ecossistema , Interações Hospedeiro-Parasita , Probabilidade
11.
Ecology ; 97(6): 1518-29, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27459782

RESUMO

Intraspecific diversity, particularly of foundation species, can significantly affect population, community, and ecosystem processes. Examining how genetic diversity relates to demographic traits provides a key mechanistic link from genotypic and phenotypic variation of taxa with complex life histories to their population dynamics. We conducted a field experiment to assess how two metrics of intraspecific diversity (cohort diversity, the number of independent juvenile cohorts created from different adult source populations, and genetic relatedness, genetic similarity among individuals within and across cohorts) affect the survivorship, growth, and recruitment of the foundation species Crassostrea virginica. To assess the effects of both cohort diversity and genetic relatedness on oyster demographic traits under different environmental conditions, we manipulated juvenile oyster diversity and predator exposure (presence/absence of a cage) at two sites differing in resource availability and predation intensity. Differences in predation pressure between sites overwhelmingly determined post-settlement survivorship of oysters. However, in the absence of predation (i.e., cage treatment), one or both metrics of intraspecific diversity, in addition to site, influenced long-term survivorship, growth, and recruitment. While both cohort diversity and genetic relatedness were negatively associated with long-term survivorship, genetic relatedness alone showed a positive association with growth and cohort diversity alone showed a positive association with recruitment. Thus, our results demonstrate that in the absence of predation, intraspecific diversity can affect multiple demographic traits of a foundation species, but the relative importance of these effects depends on the environmental context. Moreover, the magnitude and direction of these effects vary depending on the diversity metric, cohort diversity or genetic relatedness, suggesting that although they are inversely related in this system, each captures sufficiently different components of intraspecific diversity. Given the global loss of oyster reef habitat and rapid decline in oyster population size, our results are particularly relevant to management and restoration. In addition, aquaculture, which commonly excludes predators during early life history stages, may benefit from incorporation of oyster cohort diversity into standard practice.


Assuntos
Variação Genética , Ostreidae/fisiologia , Animais , Ostreidae/genética , Dinâmica Populacional , Especificidade da Espécie
12.
PLoS One ; 10(8): e0125095, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26275296

RESUMO

Coastal economies and ecosystems have historically depended on oyster reefs, but this habitat has declined globally by 85% because of anthropogenic activities. In a Florida estuary, we investigated the cause of newly reported losses of oysters. We found that the oyster reefs have deteriorated from north to south and that this deterioration was positively correlated with the abundance of carnivorous conchs and water salinity. In experiments across these gradients, oysters survived regardless of salinity if conchs were excluded. After determining that conchs were the proximal cause of oyster loss, we tested whether elevated water salinity was linked to conch abundance either by increasing conch growth and survivorship or by decreasing the abundance of a predator of conchs. In field experiments across a salinity gradient, we failed to detect spatial variation in predation on conchs or in conch growth and survivorship. A laboratory experiment, however, demonstrated the role of salinity by showing that conch larvae failed to survive at low salinities. Because this estuary's salinity increased in 2006 in response to reduced inputs of freshwater, we concluded that the ultimate cause of oyster decline was an increase in salinity. According to records from 2002 to 2012, oyster harvests have remained steady in the northernmost estuaries of this ecoregion (characterized by high reef biomass, low salinity, and low conch abundance) but have declined in the southernmost estuaries (characterized by lower reef biomass, increases in salinity, and increases in conch abundance). Oyster conservation in this ecoregion, which is probably one of the few that still support viable oyster populations, may be undermined by drought-induced increases in salinity causing an increased abundance of carnivorous conchs.


Assuntos
Secas , Ostreidae , Animais , Ecossistema , Florida
13.
Proc Biol Sci ; 281(1788): 20140715, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24943367

RESUMO

The risk of predation can have large effects on ecological communities via changes in prey behaviour, morphology and reproduction. Although prey can use a variety of sensory signals to detect predation risk, relatively little is known regarding the effects of predator acoustic cues on prey foraging behaviour. Here we show that an ecologically important marine crab species can detect sound across a range of frequencies, probably in response to particle acceleration. Further, crabs suppress their resource consumption in the presence of experimental acoustic stimuli from multiple predatory fish species, and the sign and strength of this response is similar to that elicited by water-borne chemical cues. When acoustic and chemical cues were combined, consumption differed from expectations based on independent cue effects, suggesting redundancies among cue types. These results highlight that predator acoustic cues may influence prey behaviour across a range of vertebrate and invertebrate taxa, with the potential for cascading effects on resource abundance.


Assuntos
Bivalves/fisiologia , Braquiúros/fisiologia , Peixes/fisiologia , Comportamento Predatório , Som , Animais , Comportamento Alimentar , Feminino , Cadeia Alimentar , Masculino , Densidade Demográfica , Distribuição Aleatória
14.
Ecol Lett ; 17(7): 845-54, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24796892

RESUMO

Predators can indirectly benefit prey populations by suppressing mid-trophic level consumers, but often the strength and outcome of trophic cascades are uncertain. We manipulated oyster reef communities to test the generality of potential causal factors across a 1000-km region. Densities of oyster consumers were weakly influenced by predators at all sites. In contrast, consumer foraging behaviour in the presence of predators varied considerably, and these behavioural effects altered the trophic cascade across space. Variability in the behavioural cascade was linked to regional gradients in oyster recruitment to and sediment accumulation on reefs. Specifically, asynchronous gradients in these factors influenced whether the benefits of suppressed consumer foraging on oyster recruits exceeded costs of sediment accumulation resulting from decreased consumer activity. Thus, although predation on consumers remains consistent, predator influences on behaviour do not; rather, they interact with environmental gradients to cause biogeographic variability in the net strength of trophic cascades.


Assuntos
Cadeia Alimentar , Ostreidae/fisiologia , Animais , Filogeografia , Dinâmica Populacional , Sudeste dos Estados Unidos
15.
Oecologia ; 174(3): 731-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24193001

RESUMO

Drivers of large-scale variability in parasite prevalence are not well understood. For logistical reasons, explorations of spatial patterns in parasites are often performed as observational studies. However, to understand the mechanisms that underlie these spatial patterns, standardized and controlled comparisons are needed. Here, we examined spatial variability in infection of an important fishery species and ecosystem engineer, the oyster (Crassostrea virginica) by its pea crab parasite (Zaops ostreus) across 700 km of the southeastern USA coastline. To minimize the influence of host genetics on infection patterns, we obtained juvenile oysters from a homogeneous source stock and raised them in situ for 3 months at multiple sites with similar environmental characteristics. We found that prevalence of pea crab infection varied between 24 and 73% across sites, but not systematically across latitude. Of all measured environmental variables, oyster recruitment correlated most strongly (and positively) with pea crab infection, explaining 92% of the variability in infection across sites. Our data ostensibly suggest that regional processes driving variation in oyster recruitment similarly affect the recruitment of one of its common parasites.


Assuntos
Braquiúros/fisiologia , Crassostrea/parasitologia , Ecossistema , Interações Hospedeiro-Parasita , Animais , Feminino , Pesqueiros , Masculino , Parasitos , Densidade Demográfica , Prevalência , Sudeste dos Estados Unidos , Temperatura , Movimentos da Água
16.
PLoS One ; 8(7): e69244, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23861964

RESUMO

Increased recognition of the global importance of salt marshes as 'blue carbon' (C) sinks has led to concern that salt marshes could release large amounts of stored C into the atmosphere (as CO2) if they continue undergoing disturbance, thereby accelerating climate change. Empirical evidence of C release following salt marsh habitat loss due to disturbance is rare, yet such information is essential for inclusion of salt marshes in greenhouse gas emission reduction and offset schemes. Here we investigated the stability of salt marsh (Spartinaalterniflora) sediment C levels following seagrass (Thallasiatestudinum) wrack accumulation; a form of disturbance common throughout the world that removes large areas of plant biomass in salt marshes. At our study site (St Joseph Bay, Florida, USA), we recorded 296 patches (7.5 ± 2.3 m(2) mean area ± SE) of vegetation loss (aged 3-12 months) in a salt marsh meadow the size of a soccer field (7 275 m(2)). Within these disturbed patches, levels of organic C in the subsurface zone (1-5 cm depth) were ~30% lower than the surrounding undisturbed meadow. Subsequent analyses showed that the decline in subsurface C levels in disturbed patches was due to loss of below-ground plant (salt marsh) biomass, which otherwise forms the main component of the long-term 'refractory' C stock. We conclude that disturbance to salt marsh habitat due to wrack accumulation can cause significant release of below-ground C; which could shift salt marshes from C sinks to C sources, depending on the intensity and scale of disturbance. This mechanism of C release is likely to increase in the future due to sea level rise; which could increase wrack production due to increasing storminess, and will facilitate delivery of wrack into salt marsh zones due to higher and more frequent inundation.


Assuntos
Carbono/análise , Cloreto de Sódio/química , Áreas Alagadas , Sedimentos Geológicos/química , Modelos Lineares , Compostos Orgânicos/análise
17.
Ecol Lett ; 16(6): 821-33, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23521769

RESUMO

Biological invasions depend in part on the resistance of native communities. Meta-analyses of terrestrial experiments demonstrate that native primary producers and herbivores generally resist invasions of primary producers, and that resistance through competition strengthens with native producer diversity. To test the generality of these findings, we conducted a meta-analysis of marine experiments. We found that native marine producers generally failed to resist producer invasions through competition unless the native community was diverse, and this diversity effect was weaker in marine than in terrestrial systems. In contrast, native consumers equally resisted invasive producers in both ecosystems. Most marine experiments, however, tested invasive consumers and these invasions were resisted more strongly than were producer invasions. Given these differences between ecosystems and between marine trophic levels, we used a model-selection approach to assess if factors other than the resistance mechanism (i.e. competition vs. consumption) are more important for predicting marine biotic resistance. These results suggest that understanding marine biotic resistance depends on latitude, habitat and invader taxon, in addition to distinguishing between competition with and consumption by native species. By examining biotic resistance within and across ecosystems, our work provides a more complete understanding of the factors that underlie biological invasions.


Assuntos
Organismos Aquáticos , Ecossistema , Espécies Introduzidas , Biodiversidade , Comportamento Competitivo , Cadeia Alimentar
18.
PLoS One ; 7(9): e44839, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22970316

RESUMO

Predators can influence prey abundance and traits by direct consumption, as well as by non-consumptive effects of visual, olfactory, or tactile cues. The strength of these non-consumptive effects (NCEs) can be influenced by a variety of factors, including predator foraging mode, temporal variation in predator cues, and the density of competing prey. Testing the relative importance of these factors for determining NCEs is critical to our understanding of predator-prey interactions in a variety of settings. We addressed this knowledge gap by conducting two mesocosm experiments in a tri-trophic intertidal oyster reef food web. More specifically, we tested how a predatory fish (hardhead catfish, Ariopsis felis) directly influenced their prey (mud crabs, Panopeus spp.) and indirectly affected basal resources (juvenile oysters, Crassostrea virginica), as well as whether these direct and indirect effects changed across a density gradient of competing prey. Per capita crab foraging rates were inversely influenced by crab density, but they were not affected by water-borne predator cues. As a result, direct consumptive effects on prey foraging rates were stronger than non-consumptive effects. In contrast, predator cue and crab density interactively influenced indirect predator effects on oyster mortality in two experiments, with trait-mediated and density-mediated effects of similar magnitude operating to enhance oyster abundance. Consistent differences between a variable predator cue environment and other predator cue treatments (no cue and constant cue) suggests that an understanding of the natural risk environment experienced by prey is critical to testing and interpreting trait-mediated indirect interactions. Further, the prey response to the risk environment may be highly dependent on prey density, particularly in prey populations with strong intra-specific interactions.


Assuntos
Peixes/fisiologia , Ostreidae/fisiologia , Comportamento Predatório , Animais
19.
Ecology ; 93(2): 334-44, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22624315

RESUMO

Prey perception of predators can dictate how prey behaviorally balance the need to avoid being eaten with the need to consume resources, and this perception and consequent behavior can be strongly influenced by physical processes. Physical factors, however, can also alter the density and diversity of predators that pursue prey. Thus, it remains uncertain to what extent variable risk perception and antipredator behavior vs. variation in predator consumption of prey underlie prey-resource dynamics and give rise to large-scale patterns in natural systems. In an experimental food web where tidal inundation of marsh controls which predators access prey, crab and conch (predators) influenced the survivorship and antipredator behavior of snails (prey) irrespective of whether tidal inundation occurred on a diurnal or mixed semidiurnal schedule. Specifically, cues of either predator caused snails to ascend marsh leaves; snail survivorship was reduced more by unrestrained crabs than by unrestrained conchs; and snail survivorship was lowest with multiple predators than with any single predator despite interference. In contrast to these tidally consistent direct consumptive and nonconsumptive effects, indirect predator effects differed with tidal regime: snail grazing of marsh leaves in the presence of predators increased in the diurnal tide but decreased in the mixed semidiurnal tidal schedule, overwhelming the differences in snail density that resulted from direct predation. In addition, results suggest that snails may increase their foraging to compensate for stress-induced metabolic demand in the presence of predator cues. Patterns from natural marshes spanning a tidal inundation gradient (from diurnal to mixed semidiurnal tides) across 400 km of coastline were consistent with experimental results: despite minimal spatial variation in densities of predators, snails, abiotic stressors, and marsh productivity, snail grazing on marsh plants increased and plant biomass decreased on shorelines exposed to a diurnal tide. Because both the field and experimental results can be explained by tidal-induced variation in risk perception and snail behavior rather than by changes in snail density, this study reinforces the importance of nonconsumptive predator effects in complex natural systems and at large spatial scales.


Assuntos
Braquiúros/fisiologia , Herbivoria , Moluscos/fisiologia , Plantas , Caramujos/fisiologia , Ondas de Maré , Animais , Cadeia Alimentar , Sedimentos Geológicos , Golfo do México , Comportamento Predatório
20.
Oecologia ; 160(3): 563-75, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19352719

RESUMO

Although invasive species often resemble their native counterparts, differences in their foraging and anti-predator strategies may disrupt native food webs. In a California estuary, we showed that regions dominated by native crabs and native whelks have low mortality of native oysters (the basal prey), while regions dominated by invasive crabs and invasive whelks have high oyster mortality and are consequently losing a biologically diverse habitat. Using field experiments, we demonstrated that the invasive whelk's distribution is causally related to a large-scale pattern of oyster mortality. To determine whether predator-prey interactions between crabs (top predators) and whelks (intermediate consumers) indirectly control the pattern of oyster mortality, we manipulated the presence and invasion status of the intermediate and top trophic levels in laboratory mesocosms. Our results show that native crabs indirectly maintain a portion of the estuary's oyster habitat by both consuming native whelks (density-mediated trophic cascade) and altering their foraging behavior (trait-mediated trophic cascade). In contrast, invasive whelks are naive to crab predators and fail to avoid them, thereby inhibiting trait-mediated cascades and their invasion into areas with native crabs. Similarly, when native crabs are replaced with invasive crabs, the naive foraging strategy and smaller size of invasive crabs prevents them from efficiently consuming adult whelks, thereby inhibiting strong density-mediated cascades. Thus, while trophic cascades allow native crabs, whelks, and oysters to locally co-exist, the replacement of native crabs and whelks by functionally similar invasive species results in severe depletion of native oysters. As coastal systems become increasingly invaded, the mismatch of evolutionarily based strategies among predators and prey may lead to further losses of critical habitat that support marine biodiversity and ecosystem function.


Assuntos
Braquiúros/fisiologia , Cadeia Alimentar , Gastrópodes/fisiologia , Ostreidae/fisiologia , Comportamento Predatório/fisiologia , Análise de Variância , Animais , California , Biologia Marinha , Dinâmica Populacional , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...