Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurophysiol ; 106(3): 1591-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21715667

RESUMO

Population dynamics of patterned neuronal firing are fundamental to information processing in the brain. Multiphoton microscopy in combination with calcium indicator dyes allows circuit dynamics to be imaged with single-neuron resolution. However, the temporal resolution of fluorescent measures is constrained by the imaging frequency imposed by standard raster scanning techniques. As a result, traditional raster scans limit the ability to detect the relative timing of action potentials in the imaged neuronal population. To maximize the speed of fluorescence measures from large populations of neurons using a standard multiphoton laser scanning microscope (MPLSM) setup, we have developed heuristically optimal path scanning (HOPS). HOPS optimizes the laser travel path length, and thus the temporal resolution of neuronal fluorescent measures, using standard galvanometer scan mirrors. Minimizing the scan path alone is insufficient for prolonged high-speed imaging of neuronal populations. Path stability and the signal-to-noise ratio become increasingly important factors as scan rates increase. HOPS addresses this by characterizing the scan mirror galvanometers to achieve prolonged path stability. In addition, the neuronal dwell time is optimized to sharpen the detection of action potentials while maximizing scan rate. The combination of shortest path calculation and minimization of mirror positioning time allows us to optically monitor a population of neurons in a field of view at high rates with single-spike resolution, ∼ 125 Hz for 50 neurons and ∼ 8.5 Hz for 1,000 neurons. Our approach introduces an accessible method for rapid imaging of large neuronal populations using traditional MPLSMs, facilitating new insights into neuronal circuit dynamics.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neurônios/citologia , Neurônios/fisiologia , Software , Potenciais de Ação/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...