Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7493, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470866

RESUMO

Although light is essential for photosynthesis, it has the potential to elevate intracellular levels of reactive oxygen species (ROS). Since high ROS levels are cytotoxic, plants must alleviate such damage. However, the cellular mechanism underlying ROS-induced leaf damage alleviation in peroxisomes was not fully explored. Here, we show that autophagy plays a pivotal role in the selective removal of ROS-generating peroxisomes, which protects plants from oxidative damage during photosynthesis. We present evidence that autophagy-deficient mutants show light intensity-dependent leaf damage and excess aggregation of ROS-accumulating peroxisomes. The peroxisome aggregates are specifically engulfed by pre-autophagosomal structures and vacuolar membranes in both leaf cells and isolated vacuoles, but they are not degraded in mutants. ATG18a-GFP and GFP-2×FYVE, which bind to phosphatidylinositol 3-phosphate, preferentially target the peroxisomal membranes and pre-autophagosomal structures near peroxisomes in ROS-accumulating cells under high-intensity light. Our findings provide deeper insights into the plant stress response caused by light irradiation.


Assuntos
Macroautofagia , Peroxissomos , Espécies Reativas de Oxigênio/metabolismo , Peroxissomos/metabolismo , Autofagia/fisiologia , Folhas de Planta/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33888579

RESUMO

Microglia maintain central nervous system homeostasis by monitoring changes in their environment (resting state) and by taking protective actions to equilibrate such changes (activated state). These surveillance and protective roles both require constant movement of microglia. Interestingly, induced hypothermia can reduce microglia migration caused by ischemia, suggesting that microglia movement can be modulated by temperature. Although several ion channels and transporters are known to support microglia movement, the precise molecular mechanism that regulates temperature-dependent movement of microglia remains unclear. Some members of the transient receptor potential (TRP) channel superfamily exhibit thermosensitivity and thus are strong candidates for mediation of this phenomenon. Here, we demonstrate that mouse microglia exhibit temperature-dependent movement in vitro and in vivo that is mediated by TRPV4 channels within the physiological range of body temperature. Our findings may provide a basis for future research into the potential clinical application of temperature regulation to preserve cell function via manipulation of ion channel activity.


Assuntos
Movimento Celular/fisiologia , Microglia/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Células Cultivadas , Sistema Nervoso Central/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Canais de Cátion TRPV/fisiologia , Temperatura , Canais de Potencial de Receptor Transitório/metabolismo
3.
iScience ; 23(7): 101265, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32585594

RESUMO

Protein transport from the endoplasmic reticulum (ER) to Golgi stacks is mediated by the coat protein complex COPII, which is assembled at an ER subdomain called ER exit site (ERES). However, the dynamic relationship between ERESs and Golgi stacks is unknown. Here, we propose a dynamic capture-and-release model of ERESs by Golgi stacks in Arabidopsis thaliana. Using variable-angle epifluorescence microscopy with high-temporal-resolution imaging, COPII-component-bound ERESs were detected as punctate structures with sizes of 300-500 nm. Some punctate ERESs are distributed on ER tubules and sheet rims, whereas others gather around a Golgi stack in an ER-network cavity to form a beaded-ring structure. Free ERESs that wander into an ER cavity are captured by a Golgi stack in a cytoskeleton-independent manner. Then, they are released by the Golgi stack for recycling. The dynamic ERES cycling might contribute to efficient transfer of de novo synthesized cargo proteins from the ER to Golgi stacks.

4.
J Tissue Eng ; 10: 2041731419881528, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31662840

RESUMO

Image-based cell/colony analyses offer promising solutions to compensate for the lack of quality control (QC) tools for noninvasive monitoring of cultured cells, a regulatory challenge in regenerative medicine. Here, the feasibility of two image analysis algorithms, optical flow and normalised cross-correlation, to noninvasively measure cell/colony motion in human primary oral keratinocytes for screening the proliferative capacity of cells in the early phases of cell culture were examined. We applied our software to movies converted from 96 consecutive time-lapse phase-contrast images of an oral keratinocyte culture. After segmenting the growing colonies, two indices were calculated based on each algorithm. The correlation between each index of the colonies and their proliferative capacity was evaluated. The software was able to assess cell/colony motion noninvasively, and each index reflected the observed cell kinetics. A positive linear correlation was found between cell/colony motion and proliferative capacity, indicating that both algorithms are potential tools for QC.

5.
Front Plant Sci ; 10: 1214, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632430

RESUMO

The description and evaluation of morphological features are essential to many biological studies. Bioimaging and quantification methods have been developed to analyze the morphological features of plants. However, efficient three-dimensional (3D) imaging and its quantification are still under development, particularly for studies of plant morphology, due to complex organ structure with great flexibility among individuals with the same genotype. In this study, we propose a new approach that combines a 3D imaging technique using micro-computed tomography and a mathematical image-processing method to describe 3D morphological features. As an example, we applied this method to Marchantia polymorpha, a new model plant used for the evolutional study of land plants, and we evaluated a mutant individual with an abnormal 3D shape. Using this new method, we quantitatively described the thallus morphology of M. polymorpha and distinguished the wild type from a mutant with different morphological features. Our newly established method can be applied to various tissues or bodies with irregular 3D morphology.

6.
Proc Natl Acad Sci U S A ; 116(38): 19187-19192, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31484757

RESUMO

Reactive oxygen species (ROS) function as key signaling molecules to inhibit stomatal opening and promote stomatal closure in response to diverse environmental stresses. However, how guard cells maintain basal intracellular ROS levels is not yet known. This study aimed to determine the role of autophagy in the maintenance of basal ROS levels in guard cells. We isolated the Arabidopsis autophagy-related 2 (atg2) mutant, which is impaired in stomatal opening in response to light and low CO2 concentrations. Disruption of other autophagy genes, including ATG5, ATG7, ATG10, and ATG12, also caused similar stomatal defects. The atg mutants constitutively accumulated high levels of ROS in guard cells, and antioxidants such as ascorbate and glutathione rescued ROS accumulation and stomatal opening. Furthermore, the atg mutations increased the number and aggregation of peroxisomes in guard cells, and these peroxisomes exhibited reduced activity of the ROS scavenger catalase and elevated hydrogen peroxide (H2O2) as visualized using the peroxisome-targeted H2O2 sensor HyPer. Moreover, such ROS accumulation decreased by the application of 2-hydroxy-3-butynoate, an inhibitor of peroxisomal H2O2-producing glycolate oxidase. Our results showed that autophagy controls guard cell ROS homeostasis by eliminating oxidized peroxisomes, thereby allowing stomatal opening.


Assuntos
Aminopeptidases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Estômatos de Plantas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Aminopeptidases/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas Relacionadas à Autofagia/genética , Homeostase , Mutação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Transdução de Sinais
7.
Curr Genet ; 65(1): 253-267, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30066140

RESUMO

The mother-bud neck is defined as the boundary between the mother cell and bud in budding microorganisms, wherein sequential morphological events occur throughout the cell cycle. This study was designed to quantitatively investigate the morphology of the mother-bud neck in budding yeast Saccharomyces cerevisiae. Observation of yeast cells with time-lapse microscopy revealed an increase of mother-bud neck size through the cell cycle. After screening of yeast non-essential gene-deletion mutants with the image processing software CalMorph, we comprehensively identified 274 mutants with broader necks during S/G2 phase. Among these yeasts, we extensively analyzed 19 representative deletion mutants with defects in genes annotated to six gene ontology terms (polarisome, actin reorganization, endosomal tethering complex, carboxy-terminal domain protein kinase complex, DNA replication, and maintenance of DNA trinucleotide repeats). The representative broad-necked mutants exhibited calcofluor white sensitivity, suggesting defects in their cell walls. Correlation analysis indicated that maintenance of mother-bud neck size is important for cellular processes such as cell growth, system robustness, and replicative lifespan. We conclude that neck-size maintenance in budding yeast is regulated by numerous genes and has several aspects that are physiologically significant.


Assuntos
Ciclo Celular/genética , Mutação , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Actinas/genética , Actinas/metabolismo , Divisão Celular/genética , Parede Celular/genética , Parede Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Ontologia Genética , Microscopia Confocal , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Imagem com Lapso de Tempo/métodos
9.
Glia ; 66(11): 2514-2525, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30240035

RESUMO

Oligodendrocytes myelinate neuronal axons to increase conduction velocity in the vertebrate central nervous system (CNS). Recent studies revealed that myelin formed on highly active axons is more stable compared to activity-silenced axons, and length of the myelin sheath is longer in active axons as well in the zebrafish larva. However, it is unclear whether oligodendrocytes preferentially myelinate active axons compared to sensory input-deprived axons in the adult mammalian CNS. It is also unknown if a single oligodendrocyte forms both longer myelin sheaths on active axons and shorter sheaths on input-deprived axons after long-term sensory deprivation. To address these questions, we applied simultaneous labeling of both neuronal axons and oligodendrocytes to mouse models of long-term monocular eyelid suturing and unilateral whisker removal. We found that individual oligodendrocytes evenly myelinated normal and input-deprived axons in the adult mouse CNS, and myelin sheath length on normal axons and input-deprived axons formed by a single oligodendrocyte were comparable. Importantly, the average length of the myelin sheath formed by individual oligodendrocytes did change depending on relative abundance of normal against sensory-input deprived axons, indicating an abundance of deprived axons near an oligodendrocyte impacts on myelination program by a single oligodendrocyte.


Assuntos
Sistema Nervoso Central/citologia , Regulação da Expressão Gênica/fisiologia , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Quiasma Óptico/metabolismo , Privação Sensorial/fisiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Corpo Caloso/metabolismo , Olho/inervação , Feminino , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução Genética , Vibrissas/inervação
10.
Development ; 145(18)2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30126903

RESUMO

Arabidopsis thaliana mutants deficient in ANGUSTIFOLIA (AN) exhibit several phenotypes at the sporophyte stage, such as narrow and thicker leaves, trichomes with two branches, and twisted fruits. It is thought that these phenotypes are caused by abnormal arrangement of cortical microtubules (MTs). AN homologs are present in the genomes of diverse land plants, including the basal land plant Marchantia polymorpha, and their molecular functions have been shown to be evolutionarily conserved in terms of the ability to complement the A. thaliana an-1 mutation. However, the roles of ANs in bryophytes, the life cycle of which includes a dominant haploid gametophyte generation, remain unknown. Here, we have examined the roles of AN homologs in the model bryophyte M. polymorpha (MpAN). Mpan knockout mutants showed abnormal twisted thalli and suppressed thallus growth along the growth axis. Under weak blue light conditions, elongated thallus growth was observed in wild-type plants, whereas it was suppressed in the mutants. Moreover, disordered cortical MT orientations were observed. Our findings suggest that MpAN contributes to three-dimensional morphogenesis by regulating cortical MT arrangement in the gametophytes of bryophytes.


Assuntos
Marchantia/embriologia , Morfogênese/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Arabidopsis/embriologia , Proteínas de Arabidopsis , Técnicas de Inativação de Genes , Células Germinativas Vegetais/crescimento & desenvolvimento , Marchantia/genética
11.
J Comp Neurol ; 526(16): 2631-2646, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30136724

RESUMO

In the postnatal mammalian brain, neural stem cells of the ventricular-subventricular zone continue to generate doublecortin (Dcx)-expressing immature neurons. Throughout life, these immature neurons migrate to the olfactory bulb through the rostral migratory stream (RMS). In this study, we investigated the distribution of these putative immature neurons using enhanced green fluorescent protein (EGFP) expression in the area surrounding the RMS of the juvenile Dcx-EGFP mice. Through the combined use of an optical clearing reagent (a 2,2'-thiodiethanol solution) and two-photon microscopy, we visualized three-dimensionally the EGFP-positive cells in the entire RMS and its surroundings. The resulting wide-field and high-definition images along with computational image processing methods developed in this study were used to comprehensively determine the position of the EGFP-positive cells. Our findings revealed that the EGFP-positive cells were heterogeneously distributed in the area surrounding the RMS. In addition, the orientation patterns of the leading process of these cells, which displayed the morphology of migrating immature neurons, differed depending on their location. These novel results provide highly precise morphological information for immature neurons and suggest that a portion of immature neurons may be detached from the RMS and migrate in various directions.


Assuntos
Encéfalo/citologia , Células-Tronco Neurais/citologia , Animais , Animais Recém-Nascidos , Proteína Duplacortina , Camundongos , Camundongos Endogâmicos ICR
12.
Plant Cell Physiol ; 59(10): 1931-1941, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010972

RESUMO

The endoplasmic reticulum (ER) is a large network made of membranous cisternae and tubules, which accounts for a large proportion of the total lipid bilayer endomembrane of the cell. In mammals and yeast, LUNAPARK proteins are preferentially localized at the three-way junctions of the ER network, stabilizing the junctions and establishing the ER architecture. We identified two Arabidopsis homologs and designated them LNPA and LNPB. Subcellular localization analysis with a non-dimerizable type of green fluorescent protein (GFP) revealed that both LNPA and LNPB are predominantly distributed throughout the ER, but not preferentially localized at the three-way junctions. Quantitative analysis of the network in the double mutant lnpa lnpb revealed that deficiency of LNPA and LNPB caused the cortical ER to develop poor ER cisternae and a less dense tubular network. These phenotypes are opposite to those of LNP-deficient mutants of yeast and mammals. Despite the importance of cysteine residues in the zinc finger motif of the yeast LNP homolog (Lnp1p), the corresponding cysteine residues of LNPA were not necessary for the stabilization of ER morphology because replacing the four cysteine residues in the zinc finger motif of the LNPA protein with alanine residues did not affect its function. A significant phenotype of lnpa lnpb is generation of large spherical structures from the ER. Formation of the structures might reduce the amounts of the ER membrane to be used for generating the network, resulting in poor development of the ER network. Taken together, our results suggest that plant LNPs function differently from those in yeast and mammals: they function to distribute ER membranes appropriately throughout the cells.


Assuntos
Retículo Endoplasmático/metabolismo , Células Vegetais/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Retículo Endoplasmático/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fenótipo , Proteínas de Plantas/genética
13.
Biomed Res Int ; 2018: 2963232, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29854741

RESUMO

TRPM1, the first member of the melanoma-related transient receptor potential (TRPM) subfamily, is the visual transduction channel downstream of metabotropic glutamate receptor 6 (mGluR6) on retinal ON bipolar cells (BCs). Human TRPM1 mutations are associated with congenital stationary night blindness (CSNB). In both TRPM1 and mGluR6 KO mouse retinas, OFF but not ON BCs respond to light stimulation. Here we report an unexpected difference between TRPM1 knockout (KO) and mGluR6 KO mouse retinas. We used a multielectrode array (MEA) to record spiking in retinal ganglion cells (RGCs). We found spontaneous oscillations in TRPM1 KO retinas, but not in mGluR6 KO retinas. We performed a structural analysis on the synaptic terminals of rod ON BCs. Intriguingly, rod ON BC terminals were significantly smaller in TRPM1 KO retinas than in mGluR6 KO retinas. These data suggest that a deficiency of TRPM1, but not of mGluR6, in rod ON bipolar cells may affect synaptic terminal maturation. We speculate that impaired signaling between rod BCs and AII amacrine cells (ACs) leads to spontaneous oscillations. TRPM1 and mGluR6 are both essential components in the signaling pathway from photoreceptors to ON BC dendrites, yet they differ in their effects on the BC terminal and postsynaptic circuitry.


Assuntos
Receptores de Glutamato Metabotrópico/metabolismo , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Canais de Cátion TRPM/metabolismo , Células Amácrinas/metabolismo , Animais , Dendritos/metabolismo , Oftalmopatias Hereditárias/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Camundongos , Camundongos Knockout , Miopia/metabolismo , Cegueira Noturna/metabolismo , Células Bipolares da Retina/metabolismo , Transdução de Sinais/fisiologia
14.
Elife ; 72018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29424342

RESUMO

Accurate and extensive regulation of meiotic gene expression is crucial to distinguish germ cells from somatic cells. In the fission yeast Schizosaccharomyces pombe, a YTH family RNA-binding protein, Mmi1, directs the nuclear exosome-mediated elimination of meiotic transcripts during vegetative proliferation. Mmi1 also induces the formation of facultative heterochromatin at a subset of its target genes. Here, we show that Mmi1 prevents the mistimed expression of meiotic proteins by tethering their mRNAs to the nuclear foci. Mmi1 interacts with itself with the assistance of a homolog of Enhancer of Rudimentary, Erh1. Mmi1 self-interaction is required for foci formation, target transcript elimination, their nuclear retention, and protein expression inhibition. We propose that nuclear foci formed by Mmi1 are not only the site of RNA degradation, but also of sequestration of meiotic transcripts from the translation machinery.


Assuntos
Proteínas de Ciclo Celular/biossíntese , Regulação Fúngica da Expressão Gênica , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Proteínas de Transporte/metabolismo , Ligação Proteica , Estabilidade de RNA
15.
Glia ; 65(1): 93-105, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27759175

RESUMO

Oligodendrocytes myelinate neuronal axons during development and increase conduction velocity of neuronal impulses in the central nervous system. Neuronal axons extend from multiple brain regions and pass through the white matter; however, whether oligodendrocytes ensheath a particular set of axons or do so randomly within the mammalian brain remains unclear. We developed a novel method to visualize individual oligodendrocytes and axon derived from a particular brain region in mouse white matter using a combinational injection of attenuated rabies virus and adeno-associated virus. Using this method, we found that some populations of oligodendrocytes in the corpus callosum predominantly ensheathed axons derived from motor cortex or sensory cortex, while others ensheathed axons from both brain regions, suggesting heterogeneity in preference of myelination toward a particular subtype of neurons. Moreover, our newly established method is a versatile tool for analyzing precise morphology of each oligodendrocyte in animal models for demyelinating disorders and addressing the role of oligodendrocyte in higher brain functions. GLIA 2016. GLIA 2017;65:93-105.


Assuntos
Axônios/virologia , Bainha de Mielina/virologia , Oligodendroglia/virologia , Vírus da Raiva/metabolismo , Animais , Feminino , Camundongos Endogâmicos C57BL , Transmissão Sináptica/fisiologia
16.
Sci Rep ; 6: 34934, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27731339

RESUMO

Some cyanobacteria exhibit compaction of DNA in synchrony with their circadian rhythms accompanying cell division. Since the structure is transient, it has not yet been described in detail. Here, we successfully visualize the ultrastructure of compacted DNA in the cyanobacterium Synechococcus elongatus PCC 7942 under rigorous synchronized cultivation by means of high-voltage cryo-electron tomography. In 3D reconstructions of rapidly frozen cells, the compacted DNA appears as an undulating rod resembling a eukaryotic condensed chromosome. The compacted DNA also includes many small and paired polyphosphate bodies (PPBs), some of which seem to maintain contact with DNA that appears to twist away from them, indicating that they may act as interactive suppliers and regulators of phosphate for DNA synthesis. These observations throw light on the duplication and segregation mechanisms of cyanobacterial DNA and point to an important role for PPBs.


Assuntos
Cianobactérias/ultraestrutura , DNA Bacteriano/fisiologia , DNA Bacteriano/ultraestrutura , Cromossomos/ultraestrutura , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Microscopia de Fluorescência , Polifosfatos/química , Synechococcus/metabolismo
17.
J Radiat Res ; 57(1): 9-15, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26410759

RESUMO

The tumor suppressor protein, p53, plays pivotal roles in regulating apoptosis and proliferation in the embryonic and adult central nervous system (CNS) following neuronal injuries such as those induced by ionizing radiation. There is increasing evidence that p53 negatively regulates the self-renewal of neural stem cells in the adult murine brain; however, it is still unknown whether p53 is essential for self-renewal in the injured developing CNS. Previously, we demonstrated that the numbers of apoptotic cells in medaka (Oryzias latipes) embryos decreased in the absence of p53 at 12-24 h after irradiation with 10-Gy gamma rays. Here, we used histology to examine the later morphological development of the irradiated medaka brain. In p53-deficient larvae, the embryonic brain possessed similar vacuoles in the brain and retina, although the vacuoles were much smaller and fewer than those found in wild-type embryos. At the time of hatching (6 days after irradiation), no brain abnormality was observed. In contrast, severe disorganized neuronal arrangements were still present in the brain of irradiated wild-type embryos. Our present results demonstrated that self-renewal of the brain tissue completed faster in the absence of p53 than wild type at the time of hatching because p53 reduces the acute severe neural apoptosis induced by irradiation, suggesting that p53 is not essential for tissue self-renewal in developing brain.


Assuntos
Encéfalo/patologia , Encéfalo/efeitos da radiação , Autorrenovação Celular/efeitos da radiação , Oryzias/metabolismo , Lesões por Radiação/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Encéfalo/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Embrião não Mamífero/efeitos da radiação , Raios gama , Oryzias/embriologia , Proteína Supressora de Tumor p53/deficiência
18.
J Theor Biol ; 389: 123-31, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26551157

RESUMO

By quantifying the morphological properties of biological structures, we can better evaluate complex shapes and detect subtle morphological changes in organisms. In this paper, we propose a shape analysis method based on morphological image processing, and apply it to image analysis of actin cytoskeletal filaments in root hair cells of Arabidopsis thaliana. In plant cells, the actin cytoskeletal filaments have critical roles in various cellular processes such as vesicle trafficking and organelle motility. The dynamics of vesicles and organelles in plant cells depend on actin cytoskeletal filaments, regulating cell division and cell enlargement. To better understand the actin-dependent organelle motility, we attempted to quantify the organization of actin filaments in the root hair cells of the root hair defective 3 (rhd3) mutant. RHD3 is involved in actin organization, and its defect has been reported to affect the dynamics of various vesicles and organelles. We measured three shape features of the actin filaments in wild-type and mutant plants. One feature (thickness) was depicted on a grayscale; the others (describing the complexity of the filament network patterns in two-dimensional space) were depicted as binary features. The morphological phenotypes of the cytoskeletal filaments clearly differed between wild-type and mutant. Subtle variations of filament morphology among the mutants were detected and statistically quantified.


Assuntos
Citoesqueleto de Actina/metabolismo , Arabidopsis/citologia , Células Vegetais/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Simulação por Computador , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Processamento de Imagem Assistida por Computador , Modelos Teóricos , Mutação , Reconhecimento Automatizado de Padrão , Fenótipo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/citologia
19.
Mol Biol Cell ; 26(22): 3920-5, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26543200

RESUMO

The demand for phenomics, a high-dimensional and high-throughput phenotyping method, has been increasing in many fields of biology. The budding yeast Saccharomyces cerevisiae, a unicellular model organism, provides an invaluable system for dissecting complex cellular processes using high-resolution phenotyping. Moreover, the addition of spatial and temporal attributes to subcellular structures based on microscopic images has rendered this cell phenotyping system more reliable and amenable to analysis. A well-designed experiment followed by appropriate multivariate analysis can yield a wealth of biological knowledge. Here we review recent advances in cell imaging and illustrate their broad applicability to eukaryotic cells by showing how these techniques have advanced our understanding of budding yeast.


Assuntos
Saccharomycetales/citologia , Saccharomycetales/metabolismo , Ensaios de Triagem em Larga Escala , Microscopia/métodos , Fenótipo
20.
J Synchrotron Radiat ; 20(Pt 6): 848-53, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24121326

RESUMO

Image processing methods significantly contribute to visualization of images captured by biomedical modalities (such as mammography, X-ray computed tomography, magnetic resonance imaging, and light and electron microscopy). Quantitative interpretation of the deluge of complicated biomedical images, however, poses many research challenges, one of which is to enhance structural features that are scarcely perceptible to the human eye. This study introduces a contrast enhancement approach based on a new type of mathematical morphology called rotational morphological processing. The proposed method is applied to medical images for the enhancement of structural features. The effectiveness of the method is evaluated quantitatively by the contrast improvement ratio (CIR). The CIR of the proposed method is 12.1, versus 4.7 and 0.1 for two conventional contrast enhancement methods, clearly indicating the high contrasting capability of the method.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Humanos , Intensificação de Imagem Radiográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...