Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(6): e1011970, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38885264

RESUMO

Reactivation from latency plays a significant role in maintaining persistent lifelong Epstein-Barr virus (EBV) infection. Mechanisms governing successful activation and progression of the EBV lytic phase are not fully understood. EBV expresses multiple viral microRNAs (miRNAs) and manipulates several cellular miRNAs to support viral infection. To gain insight into the host miRNAs regulating transitions from EBV latency into the lytic stage, we conducted a CRISPR/Cas9-based screen in EBV+ Burkitt lymphoma (BL) cells using anti-Ig antibodies to crosslink the B cell receptor (BCR) and induce reactivation. Using a gRNA library against >1500 annotated human miRNAs, we identified miR-142 as a key regulator of EBV reactivation. Genetic ablation of miR-142 enhanced levels of immediate early and early lytic gene products in infected BL cells. Ago2-PAR-CLIP experiments with reactivated cells revealed miR-142 targets related to Erk/MAPK signaling, including components directly downstream of the B cell receptor (BCR). Consistent with these findings, disruption of miR-142 enhanced SOS1 levels and Mek phosphorylation in response to surface Ig cross-linking. Effects could be rescued by inhibitors of Mek (cobimetinib) or Raf (dabrafenib). Taken together, these results show that miR-142 functionally regulates SOS1/Ras/Raf/Mek/Erk signaling initiated through the BCR and consequently, restricts EBV entry into the lytic cycle.


Assuntos
Sistemas CRISPR-Cas , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , MicroRNAs , Ativação Viral , Latência Viral , Humanos , Herpesvirus Humano 4/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Linfoma de Burkitt/virologia , Linfoma de Burkitt/genética , Linfoma de Burkitt/metabolismo , Linhagem Celular Tumoral
3.
Proc Natl Acad Sci U S A ; 115(32): 8197-8202, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30038017

RESUMO

Seventy percent of people infected with hepatitis C virus (HCV) will suffer chronic infection, putting them at risk for liver disease, including hepatocellular carcinoma. The full range of mechanisms that render some people more susceptible to chronic infection and liver disease is still being elucidated. XRN exonucleases can restrict HCV replication and may help to resolve HCV infections. However, it is unknown how 5' triphosphorylated HCV transcripts, primary products of the viral polymerase, become susceptible to attack by 5' monophosphate-specific XRNs. Here, we show that the 5' RNA triphosphatase DUSP11 acts on HCV transcripts, rendering them susceptible to XRN-mediated attack. Cells lacking DUSP11 show substantially enhanced HCV replication, and this effect is diminished when XRN expression is reduced. MicroRNA-122 (miR-122), a target of current phase II anti-HCV drugs, is known to protect HCV transcripts against XRNs. We show that HCV replication is less dependent on miR-122 in cells lacking DUSP11. Combined, these results implicate DUSP11 as an important component of XRN-mediated restriction of HCV.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Exorribonucleases/metabolismo , Hepacivirus/patogenicidade , Interações Hospedeiro-Patógeno/fisiologia , MicroRNAs/metabolismo , Hidrolases Anidrido Ácido/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Fosfatases de Especificidade Dupla/genética , Exorribonucleases/genética , Técnicas de Inativação de Genes , Genoma Viral , Hepacivirus/fisiologia , Hepatite C Crônica/genética , Hepatite C Crônica/virologia , Hepatócitos/virologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo , Replicação Viral/genética
4.
PLoS Pathog ; 14(7): e1007156, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30048533

RESUMO

MicroRNAs (miRNAs) are small RNAs that regulate diverse biological processes including multiple aspects of the host-pathogen interface. Consequently, miRNAs are commonly encoded by viruses that undergo long-term persistent infection. Papillomaviruses (PVs) are capable of undergoing persistent infection, but as yet, no widely-accepted PV-encoded miRNAs have been described. The incomplete understanding of PV-encoded miRNAs is due in part to lack of tractable laboratory models for most PV types. To overcome this, we have developed miRNA Discovery by forced Genome Expression (miDGE), a new wet bench approach to miRNA identification that screens numerous pathogen genomes in parallel. Using miDGE, we screened over 73 different PV genomes for the ability to code for miRNAs. Our results show that most PVs are unlikely to code for miRNAs and we conclusively demonstrate a lack of PV miRNA expression in cancers associated with infections of several high risk HPVs. However, we identified five different high-confidence or highly probable miRNAs encoded by four different PVs (Human PVs 17, 37, 41 and a Fringilla coelebs PV (FcPV1)). Extensive in vitro assays confirm the validity of these miRNAs in cell culture and two FcPV1 miRNAs are further confirmed to be expressed in vivo in a natural host. We show that miRNAs from two PVs (HPV41 & FcPV1) are able to regulate viral transcripts corresponding to the early region of the PV genome. Combined, these findings identify the first canonical PV miRNAs and support that miRNAs of either host or viral origin are important regulators of the PV life cycle.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação Viral da Expressão Gênica/genética , MicroRNAs/genética , Papillomaviridae/genética , RNA Viral/análise , Células HEK293 , Humanos , Infecções por Papillomavirus/genética , RNA Viral/genética , Transcriptoma
5.
J Virol ; 92(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29875236

RESUMO

Polyomaviruses (PyVs) can cause serious disease in immunosuppressed hosts. Several pathogenic PyVs encode microRNAs (miRNAs), small RNAs that regulate gene expression via RNA silencing. Despite recent advances in understanding the activities of PyV miRNAs, the biological functions of PyV miRNAs during in vivo infections are mostly unknown. The studies presented here used murine polyomavirus (MuPyV) as a model to assess the roles of the PyV miRNAs in a natural host. This analysis revealed that a MuPyV mutant that is unable to express miRNAs has enhanced viral DNA loads in select tissues at late times after infection. This is consistent with the PyV miRNAs functioning to reduce viral replication during the persistent phase of infection in a natural host. Additionally, the MuPyV miRNA locus promotes viruria during the acute phase of infection as evidenced by a defect in shedding during infection with the miRNA mutant virus. The viruria defect of the miRNA mutant virus could be rescued by infecting Rag2-/- mice. These findings implicate the miRNA locus as functioning in both the persistent and acute phases of infection and suggest a role for MuPyV miRNA in evading the adaptive immune response.IMPORTANCE MicroRNAs are expressed by diverse viruses, but for only a few is there any understanding of their in vivo function. PyVs can cause serious disease in immunocompromised hosts. Therefore, increased knowledge of how these viruses interact with the immune response is of clinical relevance. Here we show a novel activity for a viral miRNA locus in promoting virus shedding. This work indicates that in addition to any role for the PyV miRNA locus in long-term persistence, it also has biological activity during the acute phase. As this mutant phenotype is alleviated by infection of mice lacking an adaptive immune response, our work also connects the in vivo activity of the PyV miRNA locus to the immune response. Given that PyV-associated disease is associated with alterations in the immune response, our findings help to better understand how the balance between PyVs and the immune response becomes altered in pathogenic states.


Assuntos
MicroRNAs/metabolismo , Infecções por Polyomavirus/patologia , Infecções por Polyomavirus/virologia , Polyomavirus/patogenicidade , RNA Viral/metabolismo , Urina/virologia , Animais , Camundongos , MicroRNAs/genética , Polyomavirus/genética , RNA Viral/genética , Eliminação de Partículas Virais
6.
Virology ; 513: 180-187, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29096160

RESUMO

Mouse mammary tumor virus (MMTV) induces breast cancer in mice in the absence of known virally-encoded oncogenes. Tumorigenesis by MMTV is thought to occur primarily through insertional mutagenesis, leading to the activation of cellular proto-oncogenes and outgrowth of selected cells. Here we investigated whether MMTV encodes microRNAs (miRNAs) and/or modulates host miRNAs that could contribute to tumorigenesis. High throughput small RNA sequencing analysis of MMTV-infected cells and MMTV-induced mammary tumors demonstrates that MMTV does not encode miRNAs. However, infected tissues have altered levels of several host miRNAs, including increased expression of members of the oncogenic miRNA cluster, miR-17-92. Notably, similar changes in miRNA levels have been previously reported in human breast cancers. Combined, our results demonstrate that virally encoded miRNAs do not contribute to MMTV-mediated tumorigenesis, but that changes in specific host miRNAs in infected cells may contribute to virus replication and tumor biology.


Assuntos
Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Neoplasias Mamárias Experimentais/virologia , Vírus do Tumor Mamário do Camundongo/fisiologia , MicroRNAs/análise , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos
7.
Nucleic Acids Res ; 45(17): e154, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28973449

RESUMO

Short hairpin RNAs (shRNAs) are effective in generating stable repression of gene expression. RNA polymerase III (RNAP III) type III promoters (U6 or H1) are typically used to drive shRNA expression. While useful for some knockdown applications, the robust expression of U6/H1-driven shRNAs can induce toxicity and generate heterogeneous small RNAs with undesirable off-target effects. Additionally, typical U6/H1 promoters encompass the majority of the ∼270 base pairs (bp) of vector space required for shRNA expression. This can limit the efficacy and/or number of delivery vector options, particularly when delivery of multiple gene/shRNA combinations is required. Here, we develop a compact shRNA (cshRNA) expression system based on retroviral microRNA (miRNA) gene architecture that uses RNAP III type II promoters. We demonstrate that cshRNAs coded from as little as 100 bps of total coding space can precisely generate small interfering RNAs (siRNAs) that are active in the RNA-induced silencing complex (RISC). We provide an algorithm with a user-friendly interface to design cshRNAs for desired target genes. This cshRNA expression system reduces the coding space required for shRNA expression by >2-fold as compared to the typical U6/H1 promoters, which may facilitate therapeutic RNAi applications where delivery vector space is limiting.


Assuntos
Marcação de Genes/métodos , Vírus da Leucemia Bovina/genética , MicroRNAs/genética , RNA Polimerase III/genética , RNA Interferente Pequeno/genética , RNA Viral/genética , Algoritmos , Pareamento de Bases , Sequência de Bases , Regulação da Expressão Gênica , Inativação Gênica , Genes Reporter , Vetores Genéticos , Células HEK293 , Humanos , Vírus da Leucemia Bovina/metabolismo , Luciferases/genética , Luciferases/metabolismo , MicroRNAs/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase III/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo , Complexo de Inativação Induzido por RNA/genética , Complexo de Inativação Induzido por RNA/metabolismo , Análise de Sequência de RNA , Interface Usuário-Computador
8.
Genes Dev ; 30(18): 2076-2092, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27798849

RESUMO

RNA silencing is a conserved eukaryotic gene expression regulatory mechanism mediated by small RNAs. In Caenorhabditis elegans, the accumulation of a distinct class of siRNAs synthesized by an RNA-dependent RNA polymerase (RdRP) requires the PIR-1 phosphatase. However, the function of PIR-1 in RNAi has remained unclear. Since mammals lack an analogous siRNA biogenesis pathway, an RNA silencing role for the mammalian PIR-1 homolog (dual specificity phosphatase 11 [DUSP11]) was unexpected. Here, we show that the RNA triphosphatase activity of DUSP11 promotes the RNA silencing activity of viral microRNAs (miRNAs) derived from RNA polymerase III (RNAP III) transcribed precursors. Our results demonstrate that DUSP11 converts the 5' triphosphate of miRNA precursors to a 5' monophosphate, promoting loading of derivative 5p miRNAs into Argonaute proteins via a Dicer-coupled 5' monophosphate-dependent strand selection mechanism. This mechanistic insight supports a likely shared function for PIR-1 in C. elegans Furthermore, we show that DUSP11 modulates the 5' end phosphate group and/or steady-state level of several host RNAP III transcripts, including vault RNAs and Alu transcripts. This study shows that steady-state levels of select noncoding RNAs are regulated by DUSP11 and defines a previously unknown portal for small RNA-mediated silencing in mammals, revealing that DUSP11-dependent RNA silencing activities are shared among diverse metazoans.


Assuntos
Proteínas Argonautas/metabolismo , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , MicroRNAs/metabolismo , RNA não Traduzido/metabolismo , Hidrolases Anidrido Ácido/metabolismo , Adenoviridae/genética , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Vírus da Leucemia Bovina/genética , Fosforilação , RNA Polimerase III/metabolismo , RNA Viral/metabolismo
9.
mSphere ; 1(2)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27301787

RESUMO

Despite increasing interest in the biology of noncoding RNAs (ncRNAs), few functions have been uncovered for viral ncRNAs in vivo. In their recent article in mSphere, Feldman and colleagues [E. R. Feldman et al., mSphere 1(2):e00105-15, 2016, doi:10.1128/mSphere.00105-15] demonstrate a highly specific activity of a gammaherpesviral ncRNA in viral dissemination and establishment of latent infection. Their work highlights several interesting features that should be informative to future studies of viral ncRNA.

11.
Methods ; 91: 57-68, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26210399

RESUMO

Many eukaryotes and some viruses encode microRNAs (miRNAs), small RNAs that post-transcriptionally regulate gene expression. While most miRNAs are generated through the activity of RNA Polymerase II (RNAP II) and subsequent processing by Drosha and Dicer, some viral miRNAs utilize alternative pathways of biogenesis. Some members of the herpesvirus and retrovirus families can direct synthesis of miRNAs through RNAP III transcription rather than RNAP II and can utilize atypical enzymes to generate miRNAs. Though the advantages of alternative miRNA biogenesis remain unclear for herpesviruses, the retroviral miRNA biogenesis routes allow the RNAP II transcribed retroviral genome to escape Drosha cleavage while still expressing abundant, biologically-active miRNAs. These RNAP III-derived miRNAs have unique characteristics that allow for their identification and characterization. In this article, we describe procedures to predict, validate, and characterize RNAP III-transcribed miRNAs and other small RNAs, while providing resources that are also useful for canonical miRNAs.


Assuntos
Algoritmos , Herpesviridae/metabolismo , MicroRNAs/biossíntese , RNA Viral/biossíntese , Retroviridae/metabolismo , Eucariotos/metabolismo , Herpesviridae/genética , RNA Polimerase III/metabolismo , Retroviridae/genética , Transcrição Gênica
12.
Nucleic Acids Res ; 42(22): 13949-62, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25428356

RESUMO

Transcripts possessing a 5'-triphosphate are a hallmark of viral transcription and can trigger the host antiviral response. 5'-triphosphates are also found on common host transcripts transcribed by RNA polymerase III (RNAP III), yet how these transcripts remain non-immunostimulatory is incompletely understood. Most microRNAs (miRNAs) are 5'-monophosphorylated as a result of sequential endonucleolytic processing by Drosha and Dicer from longer RNA polymerase II (RNAP II)-transcribed primary transcripts. In contrast, bovine leukemia virus (BLV) expresses subgenomic RNAP III transcripts that give rise to miRNAs independent of Drosha processing. Here, we demonstrate that each BLV pre-miRNA is directly transcribed by RNAP III from individual, compact RNAP III type II genes. Thus, similar to manmade RNAP III-generated short hairpin RNAs (shRNAs), the BLV pre-miRNAs are initially 5'-triphosphorylated. Nonetheless, the derivative 5p miRNAs and shRNA-generated 5p small RNAs (sRNAs) possess a 5'-monophosphate. Our enzymatic characterization and small RNA sequencing data demonstrate that BLV 5p miRNAs are co-terminal with 5'-triphosphorylated miRNA precursors (pre-miRNAs). Thus, these results identify a 5'-tri-phosphatase activity that is involved in the biogenesis of BLV miRNAs and shRNA-generated sRNAs. This work advances our understanding of retroviral miRNA and shRNA biogenesis and may have implications regarding the immunostimulatory capacity of RNAP III transcripts.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Vírus da Leucemia Bovina/genética , RNA Polimerase III/metabolismo , RNA Interferente Pequeno/biossíntese , Células HEK293 , Humanos , MicroRNAs/biossíntese , MicroRNAs/química , MicroRNAs/metabolismo , Fosfatos/análise , Precursores de RNA/biossíntese , RNA Interferente Pequeno/metabolismo , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/metabolismo , Ribonuclease III/metabolismo
13.
J Virol ; 88(21): 12683-93, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25142594

RESUMO

UNLABELLED: Several different polyomaviruses (PyVs) encode microRNAs (miRNAs) that regulate viral as well as host gene expression. However, the functions of polyomaviral miRNAs, particularly during in vivo infection, remain poorly understood. Here we identify rare naturally arising PyVs that are severely attenuated or null for miRNA expression. We identify hypomorphic or null strains for miRNA expression from rhesus macaque simian virus 40 (SV40) and human JC virus. These strains were isolated from immunocompromised hosts and derive from insertions or deletions in the viral DNA that preserve the amino acid reading frame of opposing-strand large T antigen gene. Characterization of the SV40 miRNA hypomorph, K661, shows that it is inhibited at the early miRNA biogenesis step of Drosha-mediated processing. Despite having a nonrearranged enhancer, which a previous study has shown renders some PyVs more susceptible to the autoregulatory activities of the miRNA, restoring miRNA expression to K661 has little effect on virus growth in either immortalized or primary monkey kidney cells. Thus, in addition to any effect of accompanying genomic elements, these results suggest that the cellular context also determines susceptibility to PyV miRNA-mediated effects. Combined, these results demonstrate that polyomaviruses lacking miRNAs can arise infrequently and that the functional importance of polyomaviral miRNAs is context dependent, consistent with an activity connected to the immune status of the host. IMPORTANCE: Diverse virus families encode miRNAs, yet much remains unknown about viral miRNA function and contribution to the infectious cycle. Polyomaviruses (PyVs) are small DNA viruses, long known to be important as etiological agents of rare diseases and valuable models of DNA virus infection. Here, in immunosuppressed hosts, we uncover rare naturally arising variants of different PyVs that have lost the ability to express miRNAs. This represents some of the only known natural viruses to have lost miRNA expression. By probing the biogenesis pathways of these variants, we uncover that miRNA expression is lost via small insertions or deletions that render the transcripts resistant to early steps of miRNA biogenesis while preserving the reading frame of the opposing T antigen transcripts. Overall, our study informs how miRNA genes evolve/devolve in viruses and suggests that miRNA function is exquisitely dependent not only on viral genomic context but also on the cellular and host environment.


Assuntos
Regulação Viral da Expressão Gênica , Vírus JC/genética , MicroRNAs/biossíntese , Infecções por Polyomavirus/veterinária , Infecções por Polyomavirus/virologia , Vírus 40 dos Símios/genética , Animais , Linhagem Celular , Humanos , Hospedeiro Imunocomprometido , Vírus JC/isolamento & purificação , Vírus JC/fisiologia , Macaca mulatta , MicroRNAs/genética , Mutagênese Insercional , Deleção de Sequência , Vírus 40 dos Símios/isolamento & purificação , Vírus 40 dos Símios/fisiologia , Replicação Viral
14.
RNA ; 20(7): 1068-77, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24854622

RESUMO

Processing of primary microRNA (pri-miRNA) stem-loops by the Drosha-DGCR8 complex is the initial step in miRNA maturation and crucial for miRNA function. Nonetheless, the underlying mechanism that determines the Drosha cleavage site of pri-miRNAs has remained unclear. Two prevalent but seemingly conflicting models propose that Drosha-DGCR8 anchors to and directs cleavage a fixed distance from either the basal single-stranded (ssRNA) or the terminal loop. However, recent studies suggest that the basal ssRNA and/or the terminal loop may influence the Drosha cleavage site dependent upon the sequence/structure of individual pri-miRNAs. Here, using a panel of closely related pri-miRNA variants, we further examine the role of pri-miRNA structures on Drosha cleavage site selection in cells. Our data reveal that both the basal ssRNA and terminal loop influence the Drosha cleavage site within three pri-miRNAs, the Simian Virus 40 (SV40) pri-miRNA, pri-miR-30a, and pri-miR-16. In addition to the flanking ssRNA regions, we show that an internal loop within the SV40 pri-miRNA stem strongly influences Drosha cleavage position and efficiency. We further demonstrate that the positions of the internal loop, basal ssRNA, and the terminal loop of the SV40 pri-miRNA cooperatively coordinate Drosha cleavage position and efficiency. Based on these observations, we propose that the pri-miRNA stem, defined by internal and flanking structural elements, guides the binding position of Drosha-DGCR8, which consequently determines the cleavage site. This study provides mechanistic insight into pri-miRNA processing in cells that has numerous biological implications and will assist in refining Drosha-dependent shRNA design.


Assuntos
MicroRNAs/metabolismo , Conformação de Ácido Nucleico , Processamento Pós-Transcricional do RNA , RNA Viral , Ribonuclease III/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Células HEK293 , Humanos , MicroRNAs/química , Dados de Sequência Molecular , Proteínas/metabolismo , Clivagem do RNA/genética , Precursores de RNA/química , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA/genética , RNA Viral/química , RNA Viral/metabolismo , Proteínas de Ligação a RNA , Ribonuclease III/genética , Vírus 40 dos Símios/genética
15.
mBio ; 5(2): e00074, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24713319

RESUMO

MicroRNAs (miRNAs) play regulatory roles in diverse processes in both eukaryotic hosts and their viruses, yet fundamental questions remain about which viruses code for miRNAs and the functions that they serve. Simian foamy viruses (SFVs) of Old World monkeys and apes can zoonotically infect humans and, by ill-defined mechanisms, take up lifelong infections in their hosts. Here, we report that SFVs encode multiple miRNAs via a noncanonical mode of biogenesis. The primary SFV miRNA transcripts (pri-miRNAs) are transcribed by RNA polymerase III (RNAP III) and take multiple forms, including some that are cleaved by Drosha. However, these miRNAs are generated in a context-dependent fashion, as longer RNAP II transcripts spanning this region are resistant to Drosha cleavage. This suggests that the virus may avoid any fitness penalty that could be associated with viral genome/transcript cleavage. Two SFV miRNAs share sequence similarity and functionality with notable host miRNAs, the lymphoproliferative miRNA miR-155 and the innate immunity suppressor miR-132. These results have important implications regarding foamy virus biology, viral miRNAs, and the development of retroviral-based vectors. IMPORTANCE Fundamental questions remain about which viruses encode miRNAs and their associated functions. Currently, few natural viruses with RNA genomes have been reported to encode miRNAs. Simian foamy viruses are retroviruses that are prevalent in nonhuman host populations, and some can zoonotically infect humans who hunt primates or work as animal caretakers. We identify a cluster of miRNAs encoded by SFV. Characterization of these miRNAs reveals evolutionarily conserved, unconventional mechanisms to generate small RNAs. Several SFV miRNAs share sequence similarity and functionality with host miRNAs, including the oncogenic miRNA miR-155 and innate immunity suppressor miR-132. Strikingly, unrelated herpesviruses also tap into one or both of these same regulatory pathways, implying relevance to a broad range of viruses. These findings provide new insights with respect to foamy virus biology and vectorology.


Assuntos
MicroRNAs/biossíntese , Primatas/virologia , Vírus Espumoso dos Símios/fisiologia , Transcrição Gênica , Animais , Interações Hospedeiro-Patógeno , RNA Polimerase III/metabolismo , Homologia de Sequência , Vírus Espumoso dos Símios/genética
16.
PLoS Pathog ; 9(12): e1003818, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367263

RESUMO

Torque teno viruses (TTVs) are a group of viruses with small, circular DNA genomes. Members of this family are thought to ubiquitously infect humans, although causal disease associations are currently lacking. At present, there is no understanding of how infection with this diverse group of viruses is so prevalent. Using a combined computational and synthetic approach, we predict and identify miRNA-coding regions in diverse human TTVs and provide evidence for TTV miRNA production in vivo. The TTV miRNAs are transcribed by RNA polymerase II, processed by Drosha and Dicer, and are active in RISC. A TTV mutant defective for miRNA production replicates as well as wild type virus genome; demonstrating that the TTV miRNA is dispensable for genome replication in a cell culture model. We demonstrate that a recombinant TTV genome is capable of expressing an exogenous miRNA, indicating the potential utility of TTV as a small RNA vector. Gene expression profiling of host cells identifies N-myc (and STAT) interactor (NMI) as a target of a TTV miRNA. NMI transcripts are directly regulated through a binding site in the 3'UTR. SiRNA knockdown of NMI contributes to a decreased response to interferon signaling. Consistent with this, we show that a TTV miRNA mediates a decreased response to IFN and increased cellular proliferation in the presence of IFN. Thus, we add Annelloviridae to the growing list of virus families that encode miRNAs, and suggest that miRNA-mediated immune evasion can contribute to the pervasiveness associated with some of these viruses.


Assuntos
Interferon Tipo I/genética , MicroRNAs/fisiologia , Torque teno virus/genética , Anelloviridae/genética , Células Cultivadas , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Perfilação da Expressão Gênica , Variação Genética , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno/genética , Humanos , Interferon Tipo I/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais/genética
17.
Cell Host Microbe ; 14(4): 435-45, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24075860

RESUMO

RNA interference (RNAi) is an established antiviral defense mechanism in plants and invertebrates. Whether RNAi serves a similar function in mammalian cells remains unresolved. We find that in some cell types, mammalian RNAi activity is reduced shortly after viral infection via poly-ADP-ribosylation of the RNA-induced silencing complex (RISC), a core component of RNAi. Well-established antiviral signaling pathways, including RIG-I/MAVS and RNaseL, contribute to inhibition of RISC. In the absence of virus infection, microRNAs repress interferon-stimulated genes (ISGs) associated with cell death and proliferation, thus maintaining homeostasis. Upon detection of intracellular pathogen-associated molecular patterns, RISC activity decreases, contributing to increased expression of ISGs. Our results suggest that, unlike in lower eukaryotes, mammalian RISC is not antiviral in some contexts, but rather RISC has been co-opted to negatively regulate toxic host antiviral effectors via microRNAs.


Assuntos
Vírus de DNA/imunologia , Interferons/imunologia , Interferência de RNA , Vírus de RNA/imunologia , Complexo de Inativação Induzido por RNA/metabolismo , Transdução de Sinais , Linhagem Celular , Humanos , Modelos Biológicos
18.
J Virol ; 87(23): 12838-49, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24067953

RESUMO

3' untranslated regions (UTRs) are known to play an important role in posttranscriptional regulation of gene expression. Here we map the 3' UTRs of Kaposi's sarcoma-associated herpesvirus (KSHV) using next-generation RNA sequencing, 3' rapid amplification of cDNA ends (RACE), and tiled microarray analyses. Chimeric reporters containing the KSHV 3' UTRs show a general trend toward reduced gene expression under conditions of latent infection. Those 3' UTRs with a higher GC content are more likely to be associated with reduced gene expression. KSHV transcripts display an extensive use of shared polyadenylation sites allowing for partially overlapping 3' UTRs and regulatory activities. In addition, a subset of KSHV 3' UTRs is sufficient to convey increased gene expression under conditions of lytic infection. These results suggest a role for viral 3' UTRs in contributing to differential gene expression during latent versus lytic infection.


Assuntos
Regiões 3' não Traduzidas , Regulação Viral da Expressão Gênica , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/fisiologia , Proteínas Virais/genética , Latência Viral , Linhagem Celular , Herpesvirus Humano 8/genética , Humanos , Regiões Promotoras Genéticas , Proteínas Virais/metabolismo , Replicação Viral
19.
J Virol ; 87(20): 11135-47, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23926342

RESUMO

Hundreds of virus-encoded microRNAs (miRNAs) have been uncovered, but an in-depth functional understanding is lacking for most. A major challenge for the field is separating those miRNA targets that are biologically relevant from those that are not advantageous to the virus. Here, we show that miRNAs from related variants of the polyomavirus simian vacuolating virus 40 (SV40) have differing host target repertoires (targetomes) while their direct autoregulatory activity on virus-encoded early gene products is completely preserved. These results underscore the importance of miRNA-mediated viral gene autoregulation in some polyomavirus life cycles. More broadly, these findings imply that some host targets of virus-encoded miRNAs are likely to be of little selective advantage to the virus, and our approach provides a strategy for prioritizing relevant targets.


Assuntos
Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , MicroRNAs/genética , MicroRNAs/metabolismo , Vírus 40 dos Símios/genética , Animais , Linhagem Celular , Humanos , RNA Viral/genética , RNA Viral/metabolismo , Vírus 40 dos Símios/fisiologia
20.
Genome Biol ; 13(12): R125, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23268829

RESUMO

The growing availability of large-scale functional networks has promoted the development of many successful techniques for predicting functions of genes. Here we extend these network-based principles and techniques to functionally characterize whole sets of genes. We present RIDDLE (Reflective Diffusion and Local Extension), which uses well developed guilt-by-association principles upon a human gene network to identify associations of gene sets. RIDDLE is particularly adept at characterizing sets with no annotations, a major challenge where most traditional set analyses fail. Notably, RIDDLE found microRNA-450a to be strongly implicated in ocular diseases and development. A web application is available at http://www.functionalnet.org/RIDDLE.


Assuntos
Redes Reguladoras de Genes , Software , Animais , Oftalmopatias/genética , Genômica/métodos , Humanos , Camundongos , MicroRNAs/metabolismo , Anotação de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...