Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 116(9): 2080-8, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22260404

RESUMO

The cyclic phosphazene trimer P(3)N(3)(OCH(2)CF(3))(6)and the related cyclic tetramer P(4)N(4)(OCH(2)CF(3))(8) have been synthesized, isolated and their vapor-phase absorption spectra recorded at moderate resolution using an FTIR spectrometer. The interpretation of these spectra is achieved primarily by comparison with the results of high-precision density functional calculations, which enable the principal absorption features to be assigned and conclusions to be drawn regarding the geometries and conformations adopted by both molecules. These in turn allow interesting comparisons to be made with analogous cyclic halo-phosphazenes (such as P(3)N(3)Cl(6)) and other related ring compounds. The highly flexible nature of the two cyclic phosphazenes precludes a complete theoretical study of their potential energy hypersurfaces and a novel alternative approach involving the analysis of a carefully selected subset of the possible molecular conformations has been shown to produce satisfactory results. The two cyclic phosphazene oligomers have been proposed as the major low-to-medium temperature pyrolysis products of the parent polyphosphazene (PN(OCH(2)CF(3))(2))(n), and the identification of vibrational absorption features characteristic of each molecule will enable future studies to test the validity of this proposition.


Assuntos
Compostos Organofosforados/química , Teoria Quântica , Estrutura Molecular , Espectrofotometria Infravermelho
2.
J Chem Phys ; 127(15): 154307, 2007 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-17949149

RESUMO

Angle-resolved photoelectron spectra from rotationally selected A1Au state acetylene have been recorded using velocity-map imaging. Several Renner-Teller split vibrational bands have been observed and assigned, showing good agreement with previous zero kinetic energy photoelectron (ZEKE) work [S. T. Pratt, P. M. Dehmer, and J. L. Dehmer, J. Chem. Phys. 99, 6233 (1993); S.-J. Tang, Y.-C. Chou, J. J.-M. Lin, and Y.-C. Hsu, ibid. 125, 133201 (2006).] The extracted photoelectron angular distributions (PADs) corresponding to these bands show a strong dependence on the vibronic angular momentum projection quantum number K+. Subbands with odd K+ show PADs with maximum intensity along the polarization vector of the ionizing laser beam, while those with even K+ show PADs with maximum intensity perpendicular to this direction. Velocity-map images recorded at low photoelectron energies approach rotational resolution of the ion, and the evolution of the PADs with increasing rotational level prepared in the A1Au state indicates the potential of a "complete" determination of the photoionization dynamics of the A1Au state. This is further investigated in the following paper.

3.
J Chem Phys ; 123(20): 204316, 2005 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-16351265

RESUMO

Laser photoelectron spectra have been obtained following the preparation of eight vibrational states in S(1) toluene. For four of the vibrational states (up to approximately 550 cm(-1) excess energy) excitation and ionization with nanosecond laser pulses give rise to photoelectron spectra with well-resolved vibrational peaks. For the other states (>750 cm(-1) excess energy) the photoelectron spectra show a loss of structure when nanosecond pulses are used, as a result of intramolecular dynamics [see Whiteside et al., J. Chem. Phys. 123, 204317 (2005), following paper]. A number of vibrational peaks in the photoelectron spectra are assigned, and we find that the common series of ion vibrational peaks observed following the ionization of p-fluorotoluene in various S(1) vibrational states is not reproduced in toluene.

4.
J Chem Phys ; 123(20): 204317, 2005 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-16351266

RESUMO

We present results which suggest that the photophysics of S(1) toluene is significantly more complicated than that of the related molecules p-fluorotoluene or p-difluorobenzene. We have measured a range of photoelectron spectra for a number of S(1) internal energies, on different time scales and at different temperatures, in an attempt to unravel the competing processes, but the final conclusion remains outstanding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...