Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 45(13): e2300698, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38563886

RESUMO

Regioselective modifications of cellulose using activated cellulose derivatives such as 6-halo-6-deoxycelluloses provide a convenient approach for developing sustainable products with properties tailored to specific applications. However, maintaining precise regiochemical control of substituent distribution in 6-halo-6-deoxycelluloses is challenging due to their insolubility in most common solvents and the resulting difficulties in precise structure elucidation by modern instrumental analytical techniques. Herein, an accessible NMR-based approach toward detailed characterization of 6-halo-6-deoxycelluloses, including the determination of the degrees of substitution at carbon 6 (DS6), is presented. It is shown that the direct-dissolution cellulose solvent, tetrabutylphosphonium acetate:DMSO-d6, converts 6-halo-6-deoxycelluloses to 6-monoacetylcellulose, enabling in situ solution-state NMR measurements. A range of 1D and 2D NMR experiments is used to demonstrate the quantitivity of the conversion and provide optimum dissolution conditions. In comparison with other NMR-based derivatization protocols for elucidating the structure of 6-halo-6-deoxycelluloses, the presented approach offers major advantages in terms of accuracy, speed, and simplicity of analysis, and minimal requirements for reagents or NMR instrumentation.


Assuntos
Celulose , Espectroscopia de Ressonância Magnética , Celulose/química , Estrutura Molecular , Soluções , Solubilidade , Solventes/química
2.
RSC Adv ; 14(17): 12119-12124, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38628473

RESUMO

Bicyclic guanidines are utilized in organic synthesis as base catalysts or reagents. They also offer a platform for coordination chemistry, for example in CO2 activation, and their carboxylate salts offer an efficient media for cellulose dissolution. We have studied a series of bicyclic guanidines with varying ring sizes and with varying methyl substituents with a specific aim to find hydrolytically stable acetate salts for dissolution and processing of cellulose. Different superbase synthesis pathways were tested, followed by hydrolytic stability and cellulose dissolution capacity tests. The synthesis pathways were designed to enable the scale up of the production of the superbases considering the availability of the starting molecules and the feasibility of the synthesis. As a result, we found several hydrolytically stable bicyclic guanidine structures, which can overcome many of the reoccurring problems as carboxylate salts or free bases.

3.
ACS Omega ; 9(7): 8255-8265, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405518

RESUMO

Cellulose-based materials are gaining increasing attention in the packaging industry as sustainable packaging material alternatives. Lignocellulosic polymers with high quantities of surface hydroxyls are inherently hydrophilic and hygroscopic, making them moisture-sensitive, which has been retarding the utilization of cellulosic materials in applications requiring high moisture resistance. Herein, we produced lightweight all-cellulose fiber foam films with improved water tolerance. The fiber foams were modified with willow bark extract (WBE) and alkyl ketene dimer (AKD). AKD improved the water stability, while the addition of WBE was found to improve the dry strength of the fiber foam films and bring additional functionalities, that is, antioxidant and ultraviolet protection properties, to the material. Additionally, WBE and AKD showed a synergistic effect in improving the hydrophobicity and water tolerance of the fiber foam films. Nuclear magnetic resonance (NMR) spectroscopy indicated that the interactions among WBE, cellulose, and AKD were physical, with no formation of covalent bonds. The findings of this study broaden the possibilities to utilize cellulose-based materials in high-value active packaging applications, for instance, for pharmaceutical and healthcare products or as water-resistant coatings for textiles, besides bulk packaging materials.

4.
Biomacromolecules ; 24(8): 3835-3845, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37527286

RESUMO

In the context of three-dimensional (3D) cell culture and tissue engineering, 3D printing is a powerful tool for customizing in vitro 3D cell culture models that are critical for understanding the cell-matrix and cell-cell interactions. Cellulose nanofibril (CNF) hydrogels are emerging in constructing scaffolds able to imitate tissue in a microenvironment. A direct modification of the methacryloyl (MA) group onto CNF is an appealing approach to synthesize photocross-linkable building blocks in formulating CNF-based bioinks for light-assisted 3D printing; however, it faces the challenge of the low efficiency of heterogenous surface modification. Here, a multistep approach yields CNF methacrylate (CNF-MA) with a decent degree of substitution while maintaining a highly dispersible CNF hydrogel, and CNF-MA is further formulated and copolymerized with monomeric acrylamide (AA) to form a super transparent hydrogel with tuneable mechanical strength (compression modulus, approximately 5-15 kPa). The resulting photocurable hydrogel shows good printability in direct ink writing and good cytocompatibility with HeLa and human dermal fibroblast cell lines. Moreover, the hydrogel reswells in water and expands to all directions to restore its original dimension after being air-dried, with further enhanced mechanical properties, for example, Young's modulus of a 1.1% CNF-MA/1% PAA hydrogel after reswelling in water increases to 10.3 kPa from 5.5 kPa.


Assuntos
Bioimpressão , Nanofibras , Humanos , Materiais Biocompatíveis/farmacologia , Hidrogéis/farmacologia , Celulose/farmacologia , Engenharia Tecidual , Impressão Tridimensional , Células HeLa , Alicerces Teciduais
5.
Chem Commun (Camb) ; 59(61): 9408-9411, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37436128

RESUMO

The reaction of reducing end groups in cellulose nanocrystals with dodecylamine was examined. Using a direct-dissolution solution-state NMR protocol, the regioselective formation of glucosylamines was shown. This provides an elegant approach to sustainably functionalize these bio-based nanomaterials, that may not require further reduction to more stable secondary amines.

6.
Nat Protoc ; 18(7): 2084-2123, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37237027

RESUMO

Owing to its high sustainable production capacity, cellulose represents a valuable feedstock for the development of more sustainable alternatives to currently used fossil fuel-based materials. Chemical analysis of cellulose remains challenging, and analytical techniques have not advanced as fast as the development of the proposed materials science applications. Crystalline cellulosic materials are insoluble in most solvents, which restricts direct analytical techniques to lower-resolution solid-state spectroscopy, destructive indirect procedures or to 'old-school' derivatization protocols. While investigating their use for biomass valorization, tetralkylphosphonium ionic liquids (ILs) exhibited advantageous properties for direct solution-state nuclear magnetic resonance (NMR) analysis of crystalline cellulose. After screening and optimization, the IL tetra-n-butylphosphonium acetate [P4444][OAc], diluted with dimethyl sulfoxide-d6, was found to be the most promising partly deuterated solvent system for high-resolution solution-state NMR. The solvent system has been used for the measurement of both 1D and 2D experiments for a wide substrate scope, with excellent spectral quality and signal-to-noise, all with modest collection times. The procedure initially describes the scalable syntheses of an IL, in 24-72 h, of sufficient purity, yielding a stock electrolyte solution. The dissolution of cellulosic materials and preparation of NMR samples is presented, with pretreatment, concentration and dissolution time recommendations for different sample types. Also included is a set of recommended 1D and 2D NMR experiments with parameters optimized for an in-depth structural characterization of cellulosic materials. The time required for full characterization varies between a few hours and several days.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Solubilidade , Celulose/química , Solventes/química , Espectroscopia de Ressonância Magnética , Eletrólitos/química
7.
RSC Adv ; 13(9): 5983-5992, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36816067

RESUMO

A sustainable homogeneous transesterification protocol utilizing the superbase ionic liquid [mTBNH][OAc] and unactivated methyl esters has been developed for the preparation of cellulose esters with controllable degree of substitution. [mTBNH][OAc] shows excellent recyclability with a high recovery of sufficient purity for repeated use. This reaction media allows for cellulose transesterification reactions not only using activated or cyclic esters, but also with unactivated methyl esters, which extends the substrate and application scope. Furthermore, the solubility properties of the prepared cellulose materials were tested and some intrinsic trends were observed at low degrees of substitution.

8.
Green Chem ; 24(20): 8029-8035, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36324640

RESUMO

We investigate the interplay between cellulose crystallization and aggregation with interfibrillar interactions, shear forces, and the local changes in the medium's acidity. The latter is affected by the CO2 chemisorbed from the surrounding atmosphere, which, combined with shear forces, explain cellulose gelation. Herein, rheology, nuclear magnetic resonance (NMR), small and wide-angle X-ray scattering (SAXS/WAXS), and focused ion beam scanning electron microscopy (FIB-SEM) are combined to unveil the fundamental factors that limit cellulose gelation and maximize its dissolution in NaOH(aq). The obtained solutions are then proposed for developing green and environmentally friendly cellulose-based materials.

9.
J Mater Chem A Mater ; 10(44): 23413-23432, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36438677

RESUMO

Maximizing the benefits of nanomaterials from biomass requires unique considerations associated with their native chemical and physical structure. Both cellulose nanofibrils and nanocrystals are extracted from cellulose fibers via a top-down approach and have significantly advanced materials chemistry and set new benchmarks in the last decade. One major challenge has been to prepare defined and selectively modified nanocelluloses, which would, e.g., allow optimal particle interactions and thereby further improve the properties of processed materials. At the molecular and crystallite level, the surface of nanocelluloses offers an alternating chemical structure and functional groups of different reactivity, enabling straightforward avenues towards chemically anisotropic and molecularly patterned nanoparticles via spatioselective chemical modification. In this review, we will explain the influence and role of the multiscale hierarchy of cellulose fibers in chemical modifications, and critically discuss recent advances in selective surface chemistry of nanocelluloses. Finally, we will demonstrate the potential of those chemically anisotropic nanocelluloses in materials science and discuss challenges and opportunities in this field.

10.
Green Chem ; 24(14): 5604-5613, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35924208

RESUMO

Gas-phase acylation is an attractive and sustainable method for modifying the surface properties of cellulosics. However, little is known concerning the regioselectivity of the chemistry, i.e., which cellulose hydroxyls are preferentially acylated and if acylation can be restricted to the surface, preserving crystallinities/morphologies. Consequently, we reexplore simple gas-phase acetylation of modern-day cellulosic building blocks - cellulose nanocrystals, pulps, dry-jet wet spun (regenerated cellulose) fibres and a nanocellulose-based aerogel. Using advanced analytics, we show that the gas-phase acetylation is highly regioselective for the C6-OH, a finding also supported by DFT-based transition-state modelling on a crystalloid surface. This contrasts with acid- and base-catalysed liquid-phase acetylation methods, highlighting that gas-phase chemistry is much more controllable, yet with similar kinetics, to the uncatalyzed liquid-phase reactions. Furthermore, this method preserves both the native (or regenerated) crystalline structure of the cellulose and the supramolecular morphology of even delicate cellulosic constructs (nanocellulose aerogel exhibiting chiral cholesteric liquid crystalline phases). Due to the soft nature of this chemistry and an ability to finely control the kinetics, yielding highly regioselective low degree of substitution products, we are convinced this method will facilitate the rapid adoption of precisely tailored and biodegradable cellulosic materials.

11.
Biotechnol Lett ; 44(8): 961-974, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35763164

RESUMO

OBJECTIVES: Ionic liquids (ILs) that dissolve biomass are harmful to the enzymes that degrade lignocellulose. Enzyme hyperthermostability promotes a tolerance to ILs. Therefore, the limits of hyperthemophilic Pyrococcus horikoschii endoglucanase (PhEG) to tolerate 11 superbase ILs were explored. RESULTS: PhEG was found to be most tolerant to 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc) in soluble 1% carboxymethylcellulose (CMC) and insoluble 1% Avicel substrates. At 35% concentration, this IL caused an increase in enzyme activity (up to 1.5-fold) with CMC. Several ILs were more enzyme inhibiting with insoluble Avicel than with soluble CMC. Km increased greatly in the presence ILs, indicating significant competitive inhibition. Increased hydrophobicity of the IL cation or anion was associated with the strongest enzyme inhibition and activation. Surprisingly, PhEG activity was increased 2.0-2.5-fold by several ILs in 4% substrate. Cations exerted the main role in competitive inhibition of the enzyme as revealed by their greater binding energy to the active site. CONCLUSIONS: These results reveal new ways to design a beneficial combination of ILs and enzymes for the hydrolysis of lignocellulose, and the strong potential of PhEG in industrial, high substrate concentrations in aqueous IL solutions.


Assuntos
Celulase , Líquidos Iônicos , Pyrococcus horikoshii , Biomassa , Cátions , Celulase/metabolismo , Celulose/metabolismo , Líquidos Iônicos/química , Pyrococcus horikoshii/metabolismo
12.
J Chromatogr A ; 1666: 462866, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35134617

RESUMO

The morphology, composition, and selectivity of a silica-based monolithic stationary phase, grafted by a layer of trioctyl(3/4-vinylbenzyl)phosphonium chloride ([P888VBn]Cl), is presented. The results of elemental analysis confirmed that the prepared stationary phase contains 38.8 at.% of silicon, 60.2 at.% of carbon, and 1.0 at.% of phosphorus. Capillary columns (150 × 0.1 mm) for liquid chromatography were evaluated using alkylbenzenes, monosubstituted benzenes, polyaromatic compounds, substituted benzene regioisomers, and aromatic carboxylic and amino acids. The prepared ionic liquid (IL)-based stationary phase exhibits hydrophobic, hydrophilic, and electrostatic interactions, as confirmed by experiments on the evaluation of the effect of the mobile phase composition (content of acetonitrile and ammonium formate) on the isocratic chromatographic separation. Thus, the IL-based capillary column demonstrates a unique separation selectivity compared to Phenyl-, C8-, and C18-stationary phases, and high efficiency for an expanding number of structurally diverse compounds.


Assuntos
Cromatografia de Fase Reversa , Líquidos Iônicos , Cromatografia Líquida/métodos , Cromatografia de Fase Reversa/métodos , Interações Hidrofóbicas e Hidrofílicas , Líquidos Iônicos/química , Dióxido de Silício/química
13.
Chemphyschem ; 23(7): e202100635, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35130371

RESUMO

We have identified cellulose solvents, comprised of binary mixtures of molecular solvents and ionic liquids that rapidly dissolve cellulose to high concentration and show upper-critical solution temperature (UCST)-like thermodynamic behaviour - upon cooling and micro phase-separation to roughly spherical microparticle particle-gel mixtures. This is a result of an entropy-dominant process, controllable by changing temperature, with an overall exothermic regeneration step. However, the initial dissolution of cellulose in this system, from the majority cellulose I allomorph upon increasing temperature, is also exothermic. The mixtures essentially act as 'thermo-switchable' gels. Upon initial dissolution and cooling, micro-scaled spherical particles are formed, the formation onset and size of which are dependent on the presence of traces of water. Wide-angle X-ray scattering (WAXS) and 13 C cross-polarisation magic-angle spinning (CP-MAS) NMR spectroscopy have identified that the cellulose micro phase-separates with no remaining cellulose I allomorph and eventually forms a proportion of the cellulose II allomorph after water washing and drying. The rheological properties of these solutions demonstrate the possibility of a new type of cellulose processing, whereby morphology can be influenced by changing temperature.


Assuntos
Celulose , Líquidos Iônicos , Acetatos , Celulose/química , Dimetil Sulfóxido/química , Imidazóis/química , Líquidos Iônicos/química , Lactonas
14.
Green Chem ; 23(18): 6966-6974, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671224

RESUMO

A new regioselective route is introduced for surface modification of biological colloids in the presence of water. Taking the case of cellulose nanofibers (CNFs), we demonstrate a site-specific (93% selective) reaction between the primary surface hydroxyl groups (C6-OH) of cellulose and acyl imidazoles. CNFs bearing C6-acetyl and C6-isobutyryl groups, with a degree of substitution of up to 1 mmol g-1 are obtained upon surface esterification, affording CNFs of adjustable surface energy. The morphological and structural features of the nanofibers remain largely unaffected, but the regioselective surface reactions enable tailoring of their interfacial interactions, as demonstrated in oil/water Pickering emulsions. Our method precludes the need for drying or exchange with organic solvents for surface esterification, otherwise needed in the synthesis of esterified colloids and polysaccharides. Moreover, the method is well suited for application at high-solid content, opening the possibility for implementation in reactive extrusion and compounding. The proposed acylation is introduced as a sustainable approach that benefits from the presence of water and affords a high chemical substitution selectivity.

15.
J Am Chem Soc ; 143(41): 17040-17046, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34617737

RESUMO

Selective surface modification of biobased fibers affords effective individualization and functionalization into nanomaterials, as exemplified by the TEMPO-mediated oxidation. However, such a route leads to changes of the native surface chemistry, affecting interparticle interactions and limiting the development of potential supermaterials. Here we introduce a methodology to extract elementary cellulose fibrils by treatment of biomass with N-succinylimidazole, achieving regioselective surface modification of C6-OH, which can be reverted using mild post-treatments. No polymer degradation, cross-linking, nor changes in crystallinity occur under the mild processing conditions, yielding cellulose nanofibrils bearing carboxyl moieties, which can be removed by saponification. The latter offers a significant opportunity in the reconstitution of the chemical and structural interfaces associated with the native states. Consequently, 3D structuring of native elementary cellulose nanofibrils is made possible with the same supramolecular features as the biosynthesized fibers, which is required to unlock the full potential of cellulose as a sustainable building block.

16.
Biomacromolecules ; 22(6): 2702-2717, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34060815

RESUMO

When cellulose nanocrystals (CNCs) are isolated from cellulose microfibrils, the parallel arrangement of the cellulose chains in the crystalline domains is retained so that all reducing end-groups (REGs) point to one crystallite end. This permits the selective chemical modification of one end of the CNCs. In this study, two reaction pathways are compared to selectively attach atom-transfer radical polymerization (ATRP) initiators to the REGs of CNCs, using reductive amination. This modification further enabled the site-specific grafting of the anionic polyelectrolyte poly(sodium 4-styrenesulfonate) (PSS) from the CNCs. Different analytical methods, including colorimetry and solution-state NMR analysis, were combined to confirm the REG-modification with ATRP-initiators and PSS. The achieved grafting yield was low due to either a limited conversion of the CNC REGs or side reactions on the polymerization initiator during the reductive amination. The end-tethered CNCs were easy to redisperse in water after freeze-drying, and the shear birefringence of colloidal suspensions is maintained after this process.


Assuntos
Celulose , Nanopartículas , Polimerização , Água
17.
Nat Commun ; 12(1): 2513, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947852

RESUMO

The remarkable efficiency of chemical reactions is the result of biological evolution, often involving confined water. Meanwhile, developments of bio-inspired systems, which exploit the potential of such water, have been so far rather complex and cumbersome. Here we show that surface-confined water, inherently present in widely abundant and renewable cellulosic fibres can be utilised as nanomedium to endow a singular chemical reactivity. Compared to surface acetylation in the dry state, confined water increases the reaction rate and efficiency by 8 times and 30%, respectively. Moreover, confined water enables control over chemical accessibility of selected hydroxyl groups through the extent of hydration, allowing regioselective reactions, a major challenge in cellulose modification. The reactions mediated by surface-confined water are sustainable and largely outperform those occurring in organic solvents in terms of efficiency and environmental compatibility. Our results demonstrate the unexploited potential of water bound to cellulosic nanostructures in surface esterifications, which can be extended to a wide range of other nanoporous polymeric structures and reactions.

18.
Angew Chem Int Ed Engl ; 60(1): 66-87, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32329947

RESUMO

Native plant cellulose has an intrinsic supramolecular structure. Consequently, it can be isolated as nanocellulose species, which can be utilized as building blocks for renewable nanomaterials. The structure of cellulose also permits its end-wise modification, i.e., chemical reactions exclusively on one end of a cellulose chain or a nanocellulose particle. The premises for end-wise modification have been known for decades. Nevertheless, different approaches for the reactions have emerged only recently, because of formidable synthetic and analytical challenges associated with the issue, including the adverse reactivity of the cellulose reducing end and the low abundance of newly introduced functionalities. This Review gives a full account of the scientific underpinnings and challenges related to end-wise modification of cellulose nanocrystals. Furthermore, we present how the chemical modification of cellulose nanocrystal ends may be applied to directed assembly, resulting in numerous possibilities for the construction of new materials, such as responsive liquid crystal templates and composites with tailored interactions.

19.
Biomacromolecules ; 21(2): 878-891, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31895545

RESUMO

Hydrogels of TEMPO-oxidized nanocellulose were stabilized for dry-jet wet spinning using a shell of cellulose dissolved in 1,5-diazabicyclo[4.3.0]non-5-enium propionate ([DBNH][CO2Et]), a protic ionic liquid (PIL). Coagulation in an acidic water bath resulted in continuous core-shell filaments (CSFs) that were tough and flexible with an average dry (and wet) toughness of ∼11 (2) MJ·m-3 and elongation of ∼9 (14) %. The CSF morphology, chemical composition, thermal stability, crystallinity, and bacterial activity were assessed using scanning electron microscopy with energy-dispersive X-ray spectroscopy, liquid-state nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis, pyrolysis gas chromatography-mass spectrometry, wide-angle X-ray scattering, and bacterial cell culturing, respectively. The coaxial wet spinning yields PIL-free systems carrying on the surface the cellulose II polymorph, which not only enhances the toughness of the filaments but facilities their functionalization.


Assuntos
Celulose/síntese química , Hidrogéis/síntese química , Líquidos Iônicos/síntese química , Nanofibras/química , Celulose/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hidrogéis/análise , Líquidos Iônicos/análise , Nanofibras/análise , Resistência à Tração
20.
Biochim Biophys Acta Biomembr ; 1862(2): 183115, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31704086

RESUMO

The cell membrane is mainly composed of lipid bilayers with inserted proteins and carbohydrates. Lipid bilayers made of purified or synthetic lipids are widely used for estimating the effect of target compounds on cell membranes. However, the composition of such biomimetic membranes is much simpler than the composition of biological membranes. Interactions between compounds and simple composition biomimetic membranes might not demonstrate the effect of target compounds as precisely as membranes with compositions close to real organisms. Therefore, the aim of our study is to construct biomimetic membrane closely mimicking the state of natural membranes. Liposomes were prepared from lipids extracted from L-α-phosphatidylcholine, Escherichia coli, yeast (Saccharomyces cerevisiae) and bovine liver cells through agitation and sonication. They were immobilized onto silicon dioxide (SiO2) sensor surfaces using N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid buffer with calcium chloride. The biomimetic membranes were successfully immobilized onto the SiO2 sensor surface and detected by nanoplasmonic sensing. The immobilized membranes were exposed to choline carboxylates. The membrane disruption effect was, as expected, more pronounced with increasing carbohydrate chain length of the carboxylates. The results correlated with the toxicity values determined using Vibrio fischeri bacteria. The yeast extracted lipid membranes had the strongest response to introduction of choline laurate while the bovine liver lipid extracted liposomes were the most sensitive towards the shorter choline carboxylates. This implies that the composition of the cell membrane plays a crucial role upon interaction with choline carboxylates, and underlines the necessity of testing membrane systems of different origin to obtain an overall image of such interactions.


Assuntos
Materiais Biomiméticos/química , Colina/análogos & derivados , Lipossomos/química , Lipídeos de Membrana/química , Animais , Bovinos , Membrana Celular/química , Saccharomyces cerevisiae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...