Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38917432

RESUMO

Metabolic changes are observed in patients with both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Although regulation of metabolic processes in the CNS is predominantly carried out within the hypothalamus, extra-hypothalamic CNS areas contain metabolic hormone receptors, including those for leptin (LEPR), insulin (INSR), and neuropeptide Y (NPY), indicating that they may play a role in biological processes underlying pathogenic disease processes. The status of these hormones within regions vulnerable in ALS/FTD is not well described. This study sought to determine whether the expression of these hormones and their receptors is altered in pathology-rich regions in cases of human FTD (superior frontal gyrus and insular cortex) and ALS (primary motor cortex and lumbar spinal cord) with TDP-43 pathology compared to matched healthy controls. LEPR mRNA was increased within the superior frontal gyrus of FTD cases and within primary motor cortex and lumbar spinal cord of ALS cases; INSR mRNA was increased in superior frontal gyrus and insular cortex of FTD cases. NPY protein was decreased in primary motor cortex and lumbar spinal cord of ALS cases. Our results demonstrate that metabolic hormones undergo complex alterations in ALS and FTD and suggest that these hormones could play critical roles in the pathogenesis of these diseases.

2.
BMC Neurol ; 24(1): 127, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627686

RESUMO

BACKGROUND: Dementia prevalence is predicted to triple to 152 million globally by 2050. Alzheimer's disease (AD) constitutes 70% of cases. There is an urgent need to identify individuals with preclinical AD, a 10-20-year period of progressive brain pathology without noticeable cognitive symptoms, for targeted risk reduction. Current tests of AD pathology are either too invasive, specialised or expensive for population-level assessments. Cognitive tests are normal in preclinical AD. Emerging evidence demonstrates that movement analysis is sensitive to AD across the disease continuum, including preclinical AD. Our new smartphone test, TapTalk, combines analysis of hand and speech-like movements to detect AD risk. This study aims to [1] determine which combinations of hand-speech movement data most accurately predict preclinical AD [2], determine usability, reliability, and validity of TapTalk in cognitively asymptomatic older adults and [3], prospectively validate TapTalk in older adults who have cognitive symptoms against cognitive tests and clinical diagnoses of Mild Cognitive Impairment and AD dementia. METHODS: Aim 1 will be addressed in a cross-sectional study of at least 500 cognitively asymptomatic older adults who will complete computerised tests comprising measures of hand motor control (finger tapping) and oro-motor control (syllabic diadochokinesis). So far, 1382 adults, mean (SD) age 66.20 (7.65) years, range 50-92 (72.07% female) have been recruited. Motor measures will be compared to a blood-based AD biomarker, phosphorylated tau 181 to develop an algorithm that classifies preclinical AD risk. Aim 2 comprises three sub-studies in cognitively asymptomatic adults: (i) a cross-sectional study of 30-40 adults to determine the validity of data collection from different types of smartphones, (ii) a prospective cohort study of 50-100 adults ≥ 50 years old to determine usability and test-retest reliability, and (iii) a prospective cohort study of ~1,000 adults ≥ 50 years old to validate against cognitive measures. Aim 3 will be addressed in a cross-sectional study of ~200 participants with cognitive symptoms to validate TapTalk against Montreal Cognitive Assessment and interdisciplinary consensus diagnosis. DISCUSSION: This study will establish the precision of TapTalk to identify preclinical AD and estimate risk of cognitive decline. If accurate, this innovative smartphone app will enable low-cost, accessible screening of individuals for AD risk. This will have wide applications in public health initiatives and clinical trials. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT06114914, 29 October 2023. Retrospectively registered.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Feminino , Idoso , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Masculino , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/psicologia , Smartphone , Estudos Prospectivos , Estudos Transversais , Reprodutibilidade dos Testes , Disfunção Cognitiva/diagnóstico , Biomarcadores , Peptídeos beta-Amiloides
3.
Alzheimers Dement ; 20(6): 4260-4289, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38687209

RESUMO

Experimental laboratory research has an important role to play in dementia prevention. Mechanisms underlying modifiable risk factors for dementia are promising targets for dementia prevention but are difficult to investigate in human populations due to technological constraints and confounds. Therefore, controlled laboratory experiments in models such as transgenic rodents, invertebrates and in vitro cultured cells are increasingly used to investigate dementia risk factors and test strategies which target them to prevent dementia. This review provides an overview of experimental research into 15 established and putative modifiable dementia risk factors: less early-life education, hearing loss, depression, social isolation, life stress, hypertension, obesity, diabetes, physical inactivity, heavy alcohol use, smoking, air pollution, anesthetic exposure, traumatic brain injury, and disordered sleep. It explores how experimental models have been, and can be, used to address questions about modifiable dementia risk and prevention that cannot readily be addressed in human studies. HIGHLIGHTS: Modifiable dementia risk factors are promising targets for dementia prevention. Interrogation of mechanisms underlying dementia risk is difficult in human populations. Studies using diverse experimental models are revealing modifiable dementia risk mechanisms. We review experimental research into 15 modifiable dementia risk factors. Laboratory science can contribute uniquely to dementia prevention.


Assuntos
Demência , Demência/prevenção & controle , Humanos , Animais , Fatores de Risco , Modelos Animais de Doenças
4.
Alzheimers Dement (Amst) ; 16(1): e12520, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38274411

RESUMO

INTRODUCTION: Low-cost simple tests for preclinical Alzheimer's disease are a research priority. We evaluated whether remote unsupervised webcam recordings of finger-tapping were associated with cognitive performance in older adults. METHODS: A total of 404 cognitively-asymptomatic participants (64.6 [6.77] years; 70.8% female) completed 10-second finger-tapping tests (Tasmanian [TAS] Test) and cognitive tests (Cambridge Neuropsychological Test Automated Battery [CANTAB]) online at home. Regression models including hand movement features were compared with null models (comprising age, sex, and education level); change in Akaike Information Criterion greater than 2 (ΔAIC > 2) denoted statistical difference. RESULTS: Hand movement features improved prediction of episodic memory, executive function, and working memory scores (ΔAIC > 2). Dominant hand features outperformed nondominant hand features for episodic memory (ΔAIC = 2.5), executive function (ΔAIC = 4.8), and working memory (ΔAIC = 2.2). DISCUSSION: This brief webcam test improved prediction of cognitive performance compared to age, sex, and education. Finger-tapping holds potential as a remote language-agnostic screening tool to stratify community cohorts at risk for cognitive decline.

5.
ACS Chem Neurosci ; 15(2): 346-356, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38149631

RESUMO

Aptamers are functional oligonucleotide ligands used for the molecular recognition of various targets. The natural characteristics of aptamers make them an excellent alternative to antibodies in diagnostics, therapeutics, and biosensing. DNA aptamers are mainly single-stranded oligonucleotides (ssDNA) that possess a definite binding to targets. However, the application of aptamers to the fields of brain health and neurodegenerative diseases has been limited to date. Herein, a DNA aptamer against the brain-derived neurotrophic factor (BDNF) protein was obtained by in vitro selection. BDNF is a potential biomarker of brain health and neurodegenerative diseases and has functions in the synaptic plasticity and survival of neurons. We identified eight aptamers that have binding affinity for BDNF from a 50-nucleotide library. Among these aptamers, NV_B12 showed the highest sensitivity and selectivity for detecting BDNF. In an aptamer-linked immobilized sorbent assay (ALISA), the NV_B12 aptamer strongly bound to BDNF protein, in a dose-dependent manner. The dissociation constant (Kd) for NV_B12 was 0.5 nM (95% CI: 0.4-0.6 nM). These findings suggest that BDNF-specific aptamers could be used as an alternative to antibodies in diagnostic and detection assays for BDNF.


Assuntos
Aptâmeros de Nucleotídeos , Doenças Neurodegenerativas , Humanos , Aptâmeros de Nucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/química , Fator Neurotrófico Derivado do Encéfalo/genética , DNA de Cadeia Simples , Biblioteca Gênica
6.
J Sleep Res ; : e14109, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38014898

RESUMO

Isolated rapid eye movement (REM) sleep behaviour disorder (iRBD) is a sleep disorder that is characterised by dream enactment episodes during REM sleep. It is the strongest known predictor of α-synuclein-related neurodegenerative disease (αNDD), such that >80% of people with iRBD will eventually develop Parkinson's disease, dementia with Lewy bodies, or multiple system atrophy in later life. More research is needed to understand the trajectory of phenoconversion to each αNDD. Only five 'gold standard' prevalence studies of iRBD in older adults have been undertaken previously, with estimates ranging from 0.74% to 2.01%. The diagnostic recommendations for video-polysomnography (vPSG) to confirm iRBD makes prevalence studies challenging, as vPSG is often unavailable to large cohorts. In Australia, there have been no iRBD prevalence studies, and little is known about the cognitive and motor profiles of Australian people with iRBD. The Island Study Linking Ageing and Neurodegenerative Disease (ISLAND) Sleep Study will investigate the prevalence of iRBD in Tasmania, an island state of Australia, using validated questionnaires and home-based vPSG. It will also explore several cognitive, motor, olfactory, autonomic, visual, tactile, and sleep profiles in people with iRBD to better understand which characteristics influence the progression of iRBD to αNDD. This paper details the ISLAND Sleep Study protocol and presents preliminary baseline results.

7.
BMC Public Health ; 23(1): 1886, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773122

RESUMO

BACKGROUND: Unmanaged cardiometabolic health, low physical and cognitive activity, poor diet, obesity, smoking and excessive alcohol consumption are modifiable health risk factors for dementia and public health approaches to dementia prevention have been called for. The Island Study Linking Ageing and Neurodegenerative Disease (ISLAND) is a dementia prevention public health study examining whether improving knowledge about modifiable dementia risk factors supports behaviour changes that reduce future dementia risk. METHODS: Residents of Tasmania, Australia, aged 50 + years who joined the 10-year ISLAND study were asked to complete annual online surveys about their knowledge, motivations and behaviours related to modifiable dementia risk. ISLAND included two knowledge-based interventions: a personalised Dementia Risk Profile (DRP) report based on survey responses, and the option to do a 4-week Preventing Dementia Massive Open Online Course (PDMOOC). Longitudinal regression models assessed changes in the number and type of risk factors, with effects moderated by exposures to the DRP report and engagement with the PDMOOC. Knowledge and motivational factors related to dementia risk were examined as mediators of risk behaviour change. RESULTS: Data collected between October 2019 and October 2022 (n = 3038, av. 63.7 years, 71.6% female) showed the mean number of modifiable dementia risk factors per participant (range 0 to 9) reduced from 2.17 (SD 1.24) to 1.66 (SD 1.11). This change was associated with the number of exposures to the DRP report (p = .042) and was stronger for PDMOOC participants (p = .001). The interaction between DRP and PDMOOC exposures yielded a significant improvement in risk scores (p = .004). The effect of PDMOOC engagement on behaviour change was partly mediated by increased knowledge (12%, p = .013). Self-efficacy enhanced the effect of knowledge on behaviour change, while perceived susceptibility to dementia mitigated this relationship. CONCLUSIONS: The ISLAND framework and interventions, a personalised DRP report and the four-week PDMOOC, work independently and synergistically to increase dementia risk knowledge and stimulate health behaviour change for dementia risk reduction. ISLAND offers a feasible and scalable public health approach for redressing the rising prevalence of dementia.


Assuntos
Demência , Doenças Neurodegenerativas , Humanos , Feminino , Masculino , Saúde Pública , Comportamentos Relacionados com a Saúde , Demência/epidemiologia , Demência/prevenção & controle , Envelhecimento
8.
Front Neurosci ; 17: 1237284, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638317

RESUMO

Introduction: Neurofilament light (NfL) is a blood biomarker of neurodegeneration. While serum NfL levels have been demonstrated to increase with normal ageing, the relationship between serum NfL levels and normal age-related changes in cognitive functions is less well understood. Methods: The current study investigated whether cross-sectional serum NfL levels measured by single molecule array technology (Simoa®) mediated the effect of age on cognition, measured by a battery of neuropsychological tests administered biannually for 8 years, in a cohort of 174 unimpaired older adults (≥50 years) from the Tasmanian Healthy Brain Project. Mediation analysis was conducted using latent variables representing cognitive test performance on three cognitive domains - episodic memory, executive function, and language (vocabulary, comprehension, naming). Cognitive test scores for the three domains were estimated for each participant, coincident with blood collection in 2018 using linear Bayesian hierarchical models. Results: Higher serum NfL levels were significantly positively associated with age (p < 0.001 for all domains). Cognitive test scores were significantly negatively associated with age across the domains of executive function (p < 0.001), episodic memory (p < 0.001) and language (p < 0.05). However, serum NfL levels did not significantly mediate the relationship between age and cognitive test scores across any of the domains. Discussion: This study adds to the literature on the relationship between serum NfL levels and cognition in unimpaired older adults and suggests that serum NfL is not a pre-clinical biomarker of ensuing cognitive decline in unimpaired older adults.

9.
Glia ; 71(8): 1847-1869, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36994950

RESUMO

Cerebral blood flow (CBF) is important for the maintenance of brain function and its dysregulation has been implicated in Alzheimer's disease (AD). Microglia associations with capillaries suggest they may play a role in the regulation of CBF or the blood-brain-barrier (BBB). We explored the relationship between microglia and pericytes, a vessel-resident cell type that has a major role in the control of CBF and maintenance of the BBB, discovering a spatially distinct subset of microglia that closely associate with pericytes. We termed these pericyte-associated microglia (PEM). PEM are present throughout the brain and spinal cord in NG2DsRed × CX3 CR1+/GFP mice, and in the human frontal cortex. Using in vivo two-photon microscopy, we found microglia residing adjacent to pericytes at all levels of the capillary tree and found they can maintain their position for at least 28 days. PEM can associate with pericytes lacking astroglial endfeet coverage and capillary vessel width is increased beneath pericytes with or without an associated PEM, but capillary width decreases if a pericyte loses a PEM. Deletion of the microglia fractalkine receptor (CX3 CR1) did not disrupt the association between pericytes and PEM. Finally, we found the proportion of microglia that are PEM declines in the superior frontal gyrus in AD. In summary, we identify microglia that specifically associate with pericytes and find these are reduced in number in AD, which may be a novel mechanism contributing to vascular dysfunction in neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Pericitos , Camundongos , Humanos , Animais , Pericitos/metabolismo , Camundongos Transgênicos , Microglia , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Doença de Alzheimer/metabolismo
10.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675282

RESUMO

Neurodegenerative diseases present a progressive loss of neuronal structure and function, leading to cell death and irrecoverable brain atrophy. Most have disease-modifying therapies, in part because the mechanisms of neurodegeneration are yet to be defined, preventing the development of targeted therapies. To overcome this, there is a need for tools that enable a quantitative assessment of how cellular mechanisms and diverse environmental conditions contribute to disease. One such tool is genetically encodable fluorescent biosensors (GEFBs), engineered constructs encoding proteins with novel functions capable of sensing spatiotemporal changes in specific pathways, enzyme functions, or metabolite levels. GEFB technology therefore presents a plethora of unique sensing capabilities that, when coupled with induced pluripotent stem cells (iPSCs), present a powerful tool for exploring disease mechanisms and identifying novel therapeutics. In this review, we discuss different GEFBs relevant to neurodegenerative disease and how they can be used with iPSCs to illuminate unresolved questions about causes and risks for neurodegenerative disease.


Assuntos
Técnicas Biossensoriais , Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/metabolismo , Neurônios , Corantes/metabolismo
11.
Glia ; 71(4): 880-903, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36468604

RESUMO

Traumatic brain injury (TBI) triggers neuroinflammatory cascades mediated by microglia, which promotes tissue repair in the short-term. These cascades may exacerbate TBI-induced tissue damage and symptoms in the months to years post-injury. However, the progression of the microglial function across time post-injury and whether this differs between biological sexes is not well understood. In this study, we examined the microglial proteome at 3-, 7-, or 28-days after a midline fluid percussion injury (mFPI) in male and female mice using label-free quantitative proteomics. Data are available via ProteomeXchange with identifier PXD033628. We identified a reduction in microglial proteins involved with clearance of neuronal debris via phagocytosis at 3- and 7-days post-injury. At 28 days post-injury, pro-inflammatory proteins were decreased and anti-inflammatory proteins were increased in microglia. These results indicate a reduction in microglial clearance of neuronal debris in the days post-injury with a shift to anti-inflammatory function by 28 days following TBI. The changes in the microglial proteome that occurred across time post-injury did not differ between biological sexes. However, we did identify an increase in microglial proteins related to pro-inflammation and phagocytosis as well as insulin and estrogen signaling in males compared with female mice that occurred with or without a brain injury. Although the microglial response was similar between males and females up to 28 days following TBI, biological sex differences in the microglial proteome, regardless of TBI, has implications for the efficacy of treatment strategies targeting the microglial response post-injury.


Assuntos
Lesões Encefálicas Difusas , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Feminino , Camundongos , Masculino , Animais , Microglia/metabolismo , Proteoma/metabolismo , Proteômica , Lesões Encefálicas Difusas/metabolismo , Lesões Encefálicas/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Camundongos Endogâmicos C57BL
12.
Neurology ; 100(2): e211-e219, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36302670

RESUMO

BACKGROUND AND OBJECTIVES: Females have a higher age-adjusted incidence of Alzheimer disease than males but the reasons for this remain unclear. One proposed contributing factor is that, historically, females had less access to education and, therefore, may accumulate less cognitive reserve. However, educational attainment is confounded by IQ, which in itself is a component of cognitive reserve and does not differ between sexes. Steeper age-related cognitive declines are associated with increased risk of dementia. We, therefore, evaluated the moderating effects of 2 proxies for cognitive reserve, education and IQ, on the steepness of age-related declining cognitive trajectories in unimpaired older males and females. METHODS: The Tasmanian Healthy Brain Project, a long-term cohort study, recruited healthy Australians aged 50-80 years without cognitive impairment. Baseline cognitive reserve was measured using educational history and IQ, measured by the Wechsler Test of Adult Reading, Full Scale Predicted IQ (WTAR-FSIQ). Cognitive trajectories for language, executive function, and episodic and working memory over 5 years were extracted from neuropsychological assessments. The adjusted effects of education, estimated IQ, and APOE allelic variant on cognitive trajectories were compared between males and females. RESULTS: Five hundred sixty-two individuals (mean [SD] age 60 [6.7] years; 68% male; 33% APOE ε4+) were followed up over 5 years with 1,924 assessments and 24,946 cognitive test scores (annualized attrition rate 6.6% per year). Estimated IQ correlated with years of education (p < 0.001). Estimated IQ interacted with sex to moderate age-related cognitive trajectories (p = 0.03; adjusted for education); lower IQ males experienced steeper declining trajectories than higher IQ males, but lower IQ females had similar steepness of declining trajectories to higher IQ females. Education was not associated with rate of cognitive decline (p = 0.67; adjusted for WTAR-FSIQ). There were no significant differences in age-related cognitive trajectories between APOE genotypes in either sex. DISCUSSION: IQ, a measure of cognitive reserve, predicted the steepness of declining cognitive trajectories in males only. Education did not explain as much variation in cognitive trajectories as IQ. Our findings do not support the hypothesis that historical sex disparities in access to education contribute to the higher female incidence of Alzheimer disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Reserva Cognitiva , Adulto , Humanos , Masculino , Feminino , Doença de Alzheimer/psicologia , Estudos de Coortes , Estudos Prospectivos , Austrália/epidemiologia , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/genética , Testes Neuropsicológicos , Apolipoproteínas E/genética
13.
Dis Model Mech ; 15(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36453132

RESUMO

CLN3 disease is a lysosomal storage disorder associated with fatal neurodegeneration that is caused by mutations in CLN3, with most affected individuals carrying at least one allele with a 966 bp deletion. Using CRISPR/Cas9, we corrected the 966 bp deletion mutation in human induced pluripotent stem cells (iPSCs) of a compound heterozygous patient (CLN3 Δ 966 bp and E295K). We differentiated these isogenic iPSCs, and iPSCs from an unrelated healthy control donor, to neurons and identified disease-related changes relating to protein synthesis, trafficking and degradation, and in neuronal activity, which were not apparent in CLN3-corrected or healthy control neurons. CLN3 neurons showed numerous membrane-bound vacuoles containing diverse storage material and hyperglycosylation of the lysosomal LAMP1 protein. Proteomic analysis showed increase in lysosomal-related proteins and many ribosomal subunit proteins in CLN3 neurons, accompanied by downregulation of proteins related to axon guidance and endocytosis. CLN3 neurons also had lower electrophysical activity as recorded using microelectrode arrays. These data implicate inter-related pathways in protein homeostasis and neurite arborization as contributing to CLN3 disease, and which could be potential targets for therapy.


Assuntos
Lipofuscinoses Ceroides Neuronais , Neurônios , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lisossomos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/fisiopatologia , Proteômica , Edição de Genes , Neurônios/fisiologia
14.
Neurobiol Dis ; 172: 105821, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35863521

RESUMO

The mechanisms underlying the loss of motor neuron axon integrity in amyotrophic lateral sclerosis (ALS) are unclear. SARM1 has been identified as a genetic risk variant in sporadic ALS, and the SARM1 protein is a key mediator of axon degeneration. To investigate the role of SARM1 in ALS-associated axon degeneration, we knocked out Sarm1 (Sarm1KO) in mSOD1G93ATg (mSOD1) mice. Animals were monitored for ALS disease onset and severity, with motor function assessed at pre-symptomatic and late-stage disease and lumbar spinal cord and sciatic nerve harvested for immunohistochemistry at endpoint (20 weeks). Serum was collected monthly to assess protein concentrations of biomarkers linked to axon degeneration (neurofilament light (NFL) and tau), and astrogliosis (glial fibrillary acidic protein (GFAP)), using single molecule array (Simoa®) technology. Overall, loss of Sarm1 in mSOD1 mice did not slow or delay symptom onset, failed to improve functional declines, and failed to protect motor neurons. Serum NFL levels in mSOD1 mice increased between 8 -12 and 16-20 weeks of age, with the later increase significantly reduced by loss of SARM1. Similarly, loss of SARM1 significantly reduced an increase in serum GFAP between 16 and 20 weeks of age in mSOD1 mice, indicating protection of both global axon degeneration and astrogliosis. In the spinal cord, Sarm1 deletion protected against loss of excitatory VGluT2-positive puncta and attenuated astrogliosis in mSOD1 mice. In the sciatic nerve, absence of SARM1 in mSOD1 mice restored the average area of phosphorylated neurofilament reactivity towards WT levels. Together these data suggest that Sarm1KO in mSOD1 mice is not sufficient to ameliorate functional decline or motor neuron loss but does alter serum biomarker levels and provide protection to axons and glutamatergic synapses. This indicates that treatments targeting SARM1 could warrant further investigation in ALS, potentially as part of a combination therapy.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Biomarcadores/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Gliose/metabolismo , Camundongos , Camundongos Transgênicos , Medula Espinal/metabolismo , Superóxido Dismutase/genética
15.
BMC Neurol ; 22(1): 266, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35850660

RESUMO

BACKGROUND: The worldwide prevalence of dementia is rapidly rising. Alzheimer's disease (AD), accounts for 70% of cases and has a 10-20-year preclinical period, when brain pathology covertly progresses before cognitive symptoms appear. The 2020 Lancet Commission estimates that 40% of dementia cases could be prevented by modifying lifestyle/medical risk factors. To optimise dementia prevention effectiveness, there is urgent need to identify individuals with preclinical AD for targeted risk reduction. Current preclinical AD tests are too invasive, specialist or costly for population-level assessments. We have developed a new online test, TAS Test, that assesses a range of motor-cognitive functions and has capacity to be delivered at significant scale. TAS Test combines two innovations: using hand movement analysis to detect preclinical AD, and computer-human interface technologies to enable robust 'self-testing' data collection. The aims are to validate TAS Test to [1] identify preclinical AD, and [2] predict risk of cognitive decline and AD dementia. METHODS: Aim 1 will be addressed through a cross-sectional study of 500 cognitively healthy older adults, who will complete TAS Test items comprising measures of motor control, processing speed, attention, visuospatial ability, memory and language. TAS Test measures will be compared to a blood-based AD biomarker, phosphorylated tau 181 (p-tau181). Aim 2 will be addressed through a 5-year prospective cohort study of 10,000 older adults. Participants will complete TAS Test annually and subtests of the Cambridge Neuropsychological Test Battery (CANTAB) biennially. 300 participants will undergo in-person clinical assessments. We will use machine learning of motor-cognitive performance on TAS Test to develop an algorithm that classifies preclinical AD risk (p-tau181-defined) and determine the precision to prospectively estimate 5-year risks of cognitive decline and AD. DISCUSSION: This study will establish the precision of TAS Test to identify preclinical AD and estimate risk of cognitive decline and AD. If accurate, TAS Test will provide a low-cost, accessible enrichment strategy to pre-screen individuals for their likelihood of AD pathology prior to more expensive tests such as blood or imaging biomarkers. This would have wide applications in public health initiatives and clinical trials. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05194787 , 18 January 2022. Retrospectively registered.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides , Biomarcadores , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/psicologia , Estudos Transversais , Humanos , Testes Neuropsicológicos , Estudos Prospectivos , Proteínas tau
16.
Methods Mol Biol ; 2549: 187-207, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34505266

RESUMO

Excitotoxicity is a feature of many neurodegenerative diseases and acquired forms of neural injury that is characterized by disruption of neuronal morphology. This is typically seen as beading and fragmentation of neurites when exposed to excitotoxins such as the AMPA receptor agonist kainic acid, with the extent to which these occur used to quantitate neurodegeneration. Induced pluripotent stem cells (iPSCs) provide a means to generate human neurons in vitro for mechanistic studies and can thereby be used to investigate how cells respond to excitotoxicity and to identify or test potential neuroprotective agents. To facilitate such studies, we have optimized a protocol for human iPSC differentiation to mature neurons in a 96-well plate format that enables image-based quantitation of changes to neuron morphology when exposed to kainic acid. Our protocol assays neuron morphology across seven excitotoxin concentrations with multiple control conditions and is ideally suited to comparison of neurons generated through differentiation of two isogenic iPSC lines in a single plate. We have included detailed step-by-step protocols for neural stem cell differentiation, neuronal maturation and exposure to kainic acid treatment, as well as different approaches to image-based quantitation that involve immunofluorescence or phase-contrast microscopy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Diferenciação Celular/fisiologia , Humanos , Ácido Caínico/toxicidade , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia
17.
Methods Mol Biol ; 2549: 379-398, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34505269

RESUMO

Genetically encoded fluorescent biosensors (GEFBs) enable researchers to visualize and quantify cellular processes in live cells. Induced pluripotent stem cells (iPSCs) can be genetically engineered to express GEFBs via integration into the Adeno-Associated Virus Integration Site 1 (AAVS1) safe harbor locus. This can be achieved using CRISPR/Cas ribonucleoprotein targeting to cause a double-strand break at the AAVS1 locus, which subsequently undergoes homology-directed repair (HDR) in the presence of a donor plasmid containing the GEFB sequence. We describe an optimized protocol for CRISPR/Cas-mediated knock-in of GEFBs into the AAVS1 locus of human iPSCs that allows puromycin selection and which exhibits negligible off-target editing. The resulting iPSC lines can be differentiated into cells of different lineages while retaining expression of the GEFB, enabling live-cell interrogation of cell pathway activities across a diversity of disease models.


Assuntos
Técnicas Biossensoriais , Células-Tronco Pluripotentes Induzidas , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Engenharia Genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo
18.
Front Aging Neurosci ; 13: 725914, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408648

RESUMO

Background: The brain-derived neurotrophic factor (BDNF) protein has been shown to have a prominent role in neuron survival, growth, and function in experimental models, and the BDNF Val66Met polymorphism which regulates its expression has been linked to resilience toward the effects of aging on cognition. Cognitively stimulating activity is linked to both increased levels of BDNF in the brain, and protection against age-related cognitive decline. The aim of this study was to investigate the associations between serum BDNF levels, the BDNF Val66Met genotype, and components of cognitive reserve in early and mid-life, measured with the Lifetime of Experiences Questionnaire (LEQ). Methods: Serum BDNF levels were measured cross-sectionally in 156 participants from the Tasmanian Healthy Brain Project (THBP) cohort, a study examining the potential benefits of older adults engaging in a university-level education intervention. Multiple linear regression was used to estimate serum BDNF's association with age, education, gender, BDNF Val66Met genotype, later-life university-level study, and cognitively stimulating activities measured by the LEQ. Results: Serum BDNF in older adults was associated with early life education and training, increasing 0.007 log(pg/ml) [95%CI 0.001, 0.012] per unit on the LEQ subscale. Conversely, education and training in mid-life were associated with a -0.007 log(pg/ml) [-0.012, -0.001] decrease per unit on the LEQ subscale. Serum BDNF decreased with age (-0.008 log(pg/ml) [-0.015, -0.001] per year), and male gender (-0.109 log(pg/ml) [-0.203, -0.015]), but mean differences between the BDNF Val66Met polymorphisms were not significant (p = 0.066). All effect sizes were small, with mid-life education and training having the largest effect size ( η p 2 = 0.044). Conclusion: Education in both early and mid-life explained small but significant amounts of variance in serum BDNF levels, more than age or gender. These effects were opposed and independent, suggesting that education at different stages of life may be associated with different cognitive and neural demands. Education at different stages of life may be important covariates when estimating associations between other exposures and serum BDNF.

19.
Neurobiol Aging ; 105: 340-348, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34174592

RESUMO

Tauopathies are a group of neurodegenerative diseases that involve pathological changes to the tau protein. Neuroinflammation is a commonly reported feature of tauopathies that has been demonstrated to exacerbate tau pathology and, hence, neurodegeneration. Microglia can mediate the inflammatory response in order to maintain brain homeostasis. In the aged brain, microglia are reported to undergo morphological and functional changes, adopting a pro-inflammatory profile and loss of homeostatic functions. Dystrophic and dysfunctional microglia are associated with tau pathology in the healthy and diseased brain which is proposed to contribute to disease development and progression. Microglia have also been recently demonstrated to possess sexually dimorphic roles in the developing, adult and aged brain. The sex differences in microglial functionality suggest that microglia may contribute to tauopathies which may differ between sexes. This review highlights the detrimental loop between age-related microglial changes and tau pathology with implications for microglial sexual dichotomy.


Assuntos
Envelhecimento/metabolismo , Envelhecimento/patologia , Microglia/patologia , Microglia/fisiologia , Caracteres Sexuais , Tauopatias/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Progressão da Doença , Feminino , Homeostase , Humanos , Inflamação , Masculino , Camundongos
20.
Brain Struct Funct ; 226(7): 2041-2055, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34175994

RESUMO

The calcium binding protein parvalbumin is expressed in interneurons of two main morphologies, the basket and chandelier cells, which target perisomatic domains on principal cells and are extensively interconnected in laminar networks by synapses and gap junctions. Beyond its utility as a convenient cellular marker, parvalbumin is an unambiguous identifier of the key role that these interneurons play in the fundamental functions of the cortex. They provide a temporal framework for principal cell activity by propagating gamma oscillation, providing coherence for cortical information processing and the basis for timing-dependent plasticity processes. As these parvalbumin networks mature, they are physically and functionally stabilised by axonal myelination and development of the extracellular matrix structure termed the perineuronal net. This maturation correlates with the emergence of high-speed, highly energetic activity and provides a coherent foundation for the unique ability of the cortex to cross-correlate activity across sensory modes and internal representations.


Assuntos
Bainha de Mielina , Cognição , Matriz Extracelular , Interneurônios , Parvalbuminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...