Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropathol Appl Neurobiol ; : e12950, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112248

RESUMO

OBJECTIVE: Filipin complex is an autooxidation-prone fluorescent histochemical stain used in the diagnosis of Niemann-Pick Disease Type C (NP-C), a neurodegenerative lysosomal storage disorder. It is also widely used by researchers examining the distribution and accumulation of unesterified cholesterol in cell and animal models of neurodegenerative diseases including NP-C and Sanfilippo syndrome (mucopolysaccharidosis IIIA; MPS IIIA). Recently, it has been suggested to be useful in studying Alzheimer's and Huntington's disease. Given filipin's susceptibility to photobleaching, we sought to establish a quantitative biochemical method for free cholesterol measurement. METHODS: Brain tissue from mice with MPS IIIA was stained with filipin. Total and free cholesterol in brain homogenates was measured using a commercially available kit and a quantitative LC-MS/MS assay was developed. Gangliosides GM1, GM2 and GM3 were also quantified using LC-MS/MS. RESULTS: As anticipated, the MPS IIIA mouse brain displayed large numbers of filipin-positive intra-cytoplasmic inclusions, presumptively endo-lysosomes. Challenging the prevailing dogma, however, we found no difference in the amount of free cholesterol in MPS IIIA mouse brain homogenates cf. control tissue, using either the fluorometric kit or LC-MS/MS assay. Filipin has previously been reported to bind to GM1 ganglioside, however, this lipid does not accumulate in MPS IIIA cells/tissues. Using a fluorometric assay, we demonstrate for the first time that filipin cross-reacts with both GM2 and GM3 gangliosides, explaining the filipin-reactive inclusions observed in MPS IIIA brain cells. CONCLUSION: Filipin is not specific for free cholesterol, and positive staining in any setting should be interpreted with caution.

2.
J Wildl Dis ; 57(4): 884-890, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34424960

RESUMO

A lysosomal storage disease, identified as a mucopolysaccharidosis (MPS), was diagnosed in a free-living Kaka (Nestor meridionalis), an endemic New Zealand parrot, which exhibited weakness, incoordination, and seizures. Histopathology showed typical colloid-like cytoplasmic inclusions in Purkinje cells and many other neurons throughout the brain. Electron microscopy revealed that storage bodies contained a variety of linear, curved, or circular membranous profiles and electron-dense bodies. Because the bird came from a small isolated population of Kaka in the northern South Island, a genetic cause was deemed likely. Tandem mass spectrometry revealed increased levels of heparan sulfate-derived disaccharides in the brain and liver compared with tissues from controls. Enzymatic assays documented low levels of iduronate-2-sulfatase activity, which causes a lysosomal storage disorder called MPS type II or Hunter syndrome. A captive breeding program is currently in progress, and the possibility of detecting carriers of this disorder warrants further investigation.


Assuntos
Mucopolissacaridose II , Papagaios , Animais , Heparitina Sulfato , Mucopolissacaridose II/diagnóstico , Mucopolissacaridose II/genética , Mucopolissacaridose II/patologia , Mucopolissacaridose II/veterinária , Nova Zelândia/epidemiologia , Espectrometria de Massas em Tandem/veterinária
3.
Mol Ther Methods Clin Dev ; 17: 174-187, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31909089

RESUMO

Patients with mucopolysaccharidosis type IIIA (MPS IIIA) lack the lysosomal enzyme sulfamidase (SGSH), which is responsible for the degradation of heparan sulfate (HS). Build-up of undegraded HS results in severe progressive neurodegeneration for which there is currently no treatment. The ability of the vector adeno-associated virus (AAV)rh.10-CAG-SGSH (LYS-SAF302) to correct disease pathology was evaluated in a mouse model for MPS IIIA. LYS-SAF302 was administered to 5-week-old MPS IIIA mice at three different doses (8.6E+08, 4.1E+10, and 9.0E+10 vector genomes [vg]/animal) injected into the caudate putamen/striatum and thalamus. LYS-SAF302 was able to dose-dependently correct or significantly reduce HS storage, secondary accumulation of GM2 and GM3 gangliosides, ubiquitin-reactive axonal spheroid lesions, lysosomal expansion, and neuroinflammation at 12 weeks and 25 weeks post-dosing. To study SGSH distribution in the brain of large animals, LYS-SAF302 was injected into the subcortical white matter of dogs (1.0E+12 or 2.0E+12 vg/animal) and cynomolgus monkeys (7.2E+11 vg/animal). Increases of SGSH enzyme activity of at least 20% above endogenous levels were detected in 78% (dogs 4 weeks after injection) and 97% (monkeys 6 weeks after injection) of the total brain volume. Taken together, these data validate intraparenchymal AAV administration as a promising method to achieve widespread enzyme distribution and correction of disease pathology in MPS IIIA.

4.
ACS Chem Neurosci ; 10(8): 3847-3858, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31264853

RESUMO

Heparan sulfate (HS) is a complex polysaccharide from the glycosaminoglycan (GAG) family that accumulates in tissues in several neurological lysosomal storage diseases known as mucopolysaccharidosis (MPS) disorders. The quantitation of HS in biological samples is important for studying MPS disorders but is very challenging because of its high molecular weight and heterogeneity. Recently, acid-catalyzed butanolysis followed by LC-MS/MS analysis has emerged as a promising method for the determination of HS. Butanolysis of HS produces fully desulfated disaccharide cleavage products which are detected by LC-MS/MS. Herein we describe the synthesis of butylated HS disaccharide standards and their use for determining the identity of major product peaks in LC-MS chromatograms from butanolysis of HS as well as the related GAGs heparin and heparosan. Furthermore, synthesis of a d9-labeled disaccharide internal standard enabled the development of a quantitative LC-MS/MS assay for HS. The assay was utilized for the analysis of MPS IIIA mouse brain tissues, revealing significant differences in abundance and in the regional accumulation of the various HS disaccharides in affected mice.


Assuntos
Encéfalo/metabolismo , Heparitina Sulfato/metabolismo , Mucopolissacaridose III/metabolismo , Animais , Cromatografia Líquida , Dissacarídeos , Camundongos , Espectrometria de Massas em Tandem
5.
J Inherit Metab Dis ; 40(5): 715-724, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28451919

RESUMO

Mucopolysaccharidosis (MPS) type IIIA, or Sanfilippo syndrome, is a neurodegenerative lysosomal storage disorder caused by a deficiency of the lysosomal enzyme N-sulfoglucosamine sulfohydrolase (SGSH), involved in the catabolism of heparan sulfate. The clinical spectrum is broad and the age of symptom onset and the degree of preservation of cognitive and motor functions appears greatly influenced by genotype. To explore this further, we generated a conditional knockout (Sgsh KO ) mouse model with ubiquitous Sgsh deletion, and compared the clinical and pathological phenotype with that of the spontaneous Sgsh D31N MPS-IIIA mouse model. Phenotypic deficits were noted in Sgsh KO mice prior to Sgsh D31N mice, however these outcomes did not correlate with any shift in the time of appearance nor rate of accumulation of primary (heparan sulfate) or secondary substrates (GM2/GM3 gangliosides). Other disease lesions (elevations in lysosomal integral membrane protein-II expression, reactive astrocytosis and appearance of ubiquitin-positive inclusions) were also comparable between affected mouse strains. This suggests that gross substrate storage and these neuropathological markers are neither primary determinants, nor good biomarkers/indicators of symptom generation, confirming similar observations made recently in MPS-IIIA patients. The Sgsh KO mouse will be a useful tool for elucidation of the neurological basis of disease and assessment of the clinical efficacy of new treatments for Sanfilippo syndrome.


Assuntos
Hidrolases/metabolismo , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/patologia , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo
6.
JIMD Rep ; 8: 121-32, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23430528

RESUMO

Patients with some neurological lysosomal storage disorders (LSD) exhibit improved clinical signs following bone marrow transplantation (BMT). The failure of mucopolysaccharidosis (MPS) type IIIA patients and adult mice with the condition to respond to this treatment may relate to factors such as impaired migration of donor-derived cells into the brain, insufficient enzyme production and/or secretion by the donor-derived microglial cells, or the age at which treatment is initiated. To explore these possibilities, we treated neonatal MPS IIIA mice with whole unfractionated bone marrow and observed that nucleated blood cell reconstitution occurred to a similar degree in MPS IIIA mice receiving green fluorescent protein (GFP)-expressing normal (treatment group) or MPS IIIA-GFP marrow (control group) and normal mice receiving normal-GFP marrow (control group). Further, similar distribution patterns of GFP(+) normal or MPS IIIA donor-derived cells were observed throughout the MPS IIIA mouse brain. We demonstrate that N-sulfoglucosamine sulfohydrolase (SGSH), the enzyme deficient in MPS IIIA, is produced and secreted in a manner proportional to that of other lysosomal enzymes. However, despite this, overall brain SGSH activity was unchanged in MPS IIIA mice treated with normal marrow and the lysosomal storage burden in whole brain homogenates did not decrease, most likely due to donor-derived cells comprising <0.24% of total recipient brain cells in all groups. This suggests that the failure of MPS IIIA patients and mice to respond to BMT may occur as a result of insufficient donor-derived enzyme production and/or uptake by host brain cells.

7.
Exp Neurol ; 230(2): 218-26, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21575633

RESUMO

The blood brain barrier is the major obstacle to treating lysosomal storage disorders of the central nervous system such as canine fucosidosis. This barrier was overcome by three, monthly injections of recombinant canine α-l-fucosidase enzyme were given intracisternally. In dogs treated from 8 weeks of age enzyme reached all areas of central nervous system as well as the cervical lymph node, bone marrow and liver. Brainstem and spinal cord samples from regions adjacent to the injection site had highest enzyme levels (39-73% of normal). Substantial enzyme activity (8.5-20% of normal controls) was found in the superficial brain compared to deeper regions (2.6-5.5% of normal). Treatment significantly reduced the fucosyl-linked oligosaccharide accumulation in most areas of CNS, liver and lymph node. In the surface and deep areas of lumbar spinal cord, oligosaccharide accumulation was corrected (79-80% reduction) to near normal levels (p<0.05). In the spinal meninges (thoracic and lumbar) enzyme activity (35-39% of normal control) and substrate reduction (58-63% affected vehicle treated samples) reached levels similar to those seen in phenotypically normal carriers (p<0.05).The procedure was safe and well-tolerated, treated (average 16%) dogs gained more weight (p<0.05) and there was no antibody formation or inflammatory reaction in plasma and CSF following treatments. The capacity of early ERT to modify progression of biochemical storage in fucosidosis is promising as this disease is currently only amenable to treatment by bone marrow transplantation which entails unacceptably high risks for many patients.


Assuntos
Doenças do Cão/terapia , Fucosidose/veterinária , alfa-L-Fucosidase/uso terapêutico , Animais , Barreira Hematoencefálica/enzimologia , Encéfalo/enzimologia , Modelos Animais de Doenças , Cães , Fucosidose/terapia , Infusões Intraventriculares , Espectrometria de Massas , Medula Espinal/enzimologia , Resultado do Tratamento , alfa-L-Fucosidase/administração & dosagem
8.
Brain Res ; 1104(1): 1-17, 2006 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-16828069

RESUMO

The original mucopolysaccharidosis type IIIA (MPS IIIA) mice were identified in a mixed background with contributions from four different strains. To ensure long-term stability and genetic homogeneity of this lysosomal storage disease (LSD) model, the aim of this study was to develop and characterize a C57BL/6 congenic strain. The B6.Cg-Sgsh(mps3a) strain compares favorably with the original mixed donor strain, exhibiting low liver sulfamidase activity and significant brain heparan sulfate-derived disaccharide elevation from birth. A rapid increase in brain disaccharide levels occurred after birth, with a plateau reached by 13 weeks of age at 110x the levels observed in brains of age-matched unaffected mice. Typical lysosomal inclusions were observed in cerebral cortical and cerebellar neurons and in liver hepatocytes and Kupffer cells. Ubiquitin-positive spheroids and GM(2)-ganglioside were also detected in brain. Using the Morris water maze in male mice, impaired memory and spatial learning was evident at 20 weeks of age in B6.Cg-Sgsh(mps3a) MPS IIIA mice. Other behavioral changes include motor, cognitive and sensory deficits, and aggression. Male B6.Cg-Sgsh(mps3a) MPS IIIA mice exhibited more behavioral abnormalities than B6.Cg-Sgsh(mps3a) MPS IIIA females, as observed previously in the original mixed background strain. Affected mice generally survive to 9 to 12 months of age, before death or euthanasia for humane reasons. Overall, minor differences were apparent between the new congenic and previously described mixed MPS IIIA strains. Availability of an in-bred strain will ensure more reproducible experimental outcomes thereby assisting in our goal of developing effective therapies for LSD with central nervous system disease.


Assuntos
Modelos Animais de Doenças , Hidrolases/deficiência , Mucopolissacaridose III , Fatores Etários , Animais , Comportamento Animal , Peso Corporal/fisiologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Cruzamento/métodos , Comportamento Exploratório/fisiologia , Feminino , Gangliosídeo G(M2)/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Imuno-Histoquímica/métodos , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão/métodos , Mucopolissacaridose III/genética , Mucopolissacaridose III/patologia , Mucopolissacaridose III/fisiopatologia , Fatores Sexuais , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...