Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 76(2): 486-96, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18025095

RESUMO

Francisella tularensis can cause severe disseminated disease after respiratory infection. The identification of factors involved in mortality or recovery following induction of tularemia in the mouse will improve our understanding of the natural history of this disease and facilitate future evaluation of vaccine candidate preparations. BALB/c mice were infected intranasally with the live vaccine strain (LVS) of F. tularensis subsp. holarctica and euthanized at different stages of disease to analyze the induction of immune molecules, gross anatomical features of organs, bacterial burdens, and progression of the histopathological changes in lung and spleen. Tissue-specific interleukin-6 (IL-6), macrophage inflammatory protein 2, and monocyte chemotactic protein 1 were immune markers of mortality, while anti-LVS immunoglobulin M and IL-1beta were associated with survival. Moribund mice had enlarged spleens and lungs, while surviving mice had even more prominent splenomegaly and normal-appearing lungs. Histopathology of the spleens of severely ill mice was characterized by disrupted lymphoid follicles and fragmented nuclei, while the spleens of survivors appeared healthy but with increased numbers of megakaryocytes and erythrocytes. Histopathology of the lungs of severely ill mice indicated severe pneumonia. Lungs of survivors at early time points showed increased inflammation, while at late times they appeared healthy with peribronchial lymphoid aggregates. Our results suggest that host immune factors are able to affect bacterial dissemination after respiratory tularemia, provide new insights regarding the pathological characteristics of pulmonary tularemia leading to systemic disease, and potentially identify immune markers associated with recovery from the disease.


Assuntos
Francisella tularensis/imunologia , Pneumonia/imunologia , Pneumonia/patologia , Tularemia/imunologia , Tularemia/patologia , Animais , Anticorpos Antibacterianos/análise , Peso Corporal , Quimiocina CCL2/análise , Quimiocina CXCL2/análise , Contagem de Colônia Microbiana , Feminino , Imunoglobulina M/análise , Interleucina-1beta/análise , Interleucina-6/análise , Pulmão/química , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Tamanho do Órgão , Pneumonia/microbiologia , Baço/química , Baço/microbiologia , Baço/patologia
2.
J Immunol ; 176(4): 2373-80, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16455995

RESUMO

TLR2 plays a key role in the initiation of the cellular innate immune responses by a wide range of bacterial products. TLRs signaling, including TLR2 and its coreceptors TLR1 and TLR6, is mediated by a number of specific ligands. Although many of the TLR-mediated cell signaling pathways have been elucidated in the past few years, the molecular mechanisms that lead to cell activation are still poorly understood. In this study, we investigate the interaction of PorB from Neisseria meningitidis with TLR2 and describe the direct binding of a bacterial protein to TLR2 for the first time. Using labeled PorB, we demonstrate its binding to TLR2 both in its soluble form in vitro, and when it is over-expressed on the surface of human embryonic kidney 293 cells. We also show that TLR2-mediated binding of PorB is directly related to cellular activation. In addition, using 293 cells expressing the chimeric TLR2/TLR1 and TLR2/TLR6 complexes, we report the selectivity of PorB binding to the TLR2/TLR1 heterodimer, which is required for initiating signaling in transfected 293 cells and in murine B cells. Together, these data provide new evidence that TLR2 recognizes PorB through direct binding, and that PorB-induced cell activation is mediated by a TLR2/TLR1 complex.


Assuntos
Porinas/metabolismo , Transdução de Sinais , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/metabolismo , Linhagem Celular , Separação Celular , Humanos , Interleucina-8/biossíntese , Ligantes , Neisseria meningitidis/metabolismo , Ligação Proteica , Receptor 2 Toll-Like/genética
3.
Protein Expr Purif ; 44(2): 136-46, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16027004

RESUMO

The outer membrane protein PorB of Neisseria meningitidis is a pore-forming protein which has various effects on eukaryotic cells. It has been shown to (1) up-regulate the surface expression of the co-stimulatory molecule CD86 and of MHC class II (which are TLR2/MyD88 dependent and related to the porin's immune-potentiating ability), (2) be involved in prevention of apoptosis by modulating the mitochondrial membrane potential, and (3) form pores in eukaryotic cells. As an outer membrane protein, its native trimeric form isolation is complicated by its insoluble nature, requiring the presence of detergent throughout the whole procedure, and by its tight association with other outer membrane components, such as neisserial LOS or lipoproteins. In this study, an improved chromatographic purification method to obtain an homogeneous product free of endotoxin and lipoprotein is described, without loss of any of the above-mentioned properties of the porin. Furthermore, we have investigated the requirement of the native trimeric structure for the porin's activity. Inactivation of functional PorB trimers into non-functional monomers was achieved by incubation on ice. Thus, routine long- and medium-term storage at low temperature may be a cause of porin inactivation.


Assuntos
Porinas/isolamento & purificação , Animais , Apoptose/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Antígeno B7-2/metabolismo , Precipitação Química , Cromatografia em Gel , Cromatografia por Troca Iônica , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/fisiologia , Ativação Linfocitária/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Peso Molecular , Porinas/química , Porinas/farmacologia , Desnaturação Proteica , Estaurosporina/farmacologia
4.
Infect Immun ; 73(7): 4281-7, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15972520

RESUMO

Iron is limiting in the human host, and bacterial pathogens respond to this environment by regulating gene expression through the ferric uptake regulator protein (Fur). In vitro studies have demonstrated that Neisseria gonorrhoeae controls the expression of several critical genes through an iron- and Fur-mediated mechanism. While most in vitro experiments are designed to determine the response of N. gonorrhoeae to an exogenous iron concentration of zero, these organisms are unlikely to be exposed to such severe limitations of iron in vivo. To determine if N. gonorrhoeae expresses iron- and Fur-regulated genes in vivo during uncomplicated gonococcal infection, we examined gene expression profiles of specimens obtained from male subjects with urethral infections. RNA was isolated from urethral swab specimens and used as a template to amplify, by reverse transcriptase PCR (RT-PCR), gonococcal genes known to be regulated by iron and Fur (tbpA, tbpB, and fur). The constitutively expressed gonococcal rmp gene was used as a positive control. RT-PCR analysis indicated that gonorrhea-positive specimens where rmp expression was seen were also 93% (51/55) fbpA positive, 87% (48/55) tbpA positive, and 86% (14 of 16 tested) tbpB positive. In addition, we detected a fur transcript in 79% (37 of 47 tested) of positive specimens. We also measured increases in levels of immunoglobulin G antibody against TbpA (91%) and TbpB (73%) antigens in sera from infected male subjects compared to those in uninfected controls. A positive trend between tbpA gene expression and TbpA antibody levels in sera indicated a relationship between levels of gene expression and immune response in male subjects infected with gonorrhea for the first time. These results indicate that gonococcal iron- and Fur-regulated tbpA and tbpB genes are expressed in gonococcal infection and that male subjects with mucosal gonococcal infections exhibit antibodies to these proteins.


Assuntos
Proteínas de Bactérias/fisiologia , Gonorreia/metabolismo , Proteínas Repressoras/fisiologia , Proteína A de Ligação a Transferrina/genética , Proteína B de Ligação a Transferrina/genética , Adulto , Anticorpos Antibacterianos/sangue , Gonorreia/imunologia , Gonorreia/microbiologia , Humanos , Imunoglobulina G/sangue , Masculino , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína A de Ligação a Transferrina/imunologia , Proteína B de Ligação a Transferrina/imunologia , Uretra/microbiologia
5.
Cell Microbiol ; 5(2): 99-109, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12580946

RESUMO

We have previously shown that purified meningococcal porin PorB associates with mitochondria and prevents apoptosis of B cells, Jurkat cells and HeLa cells (Massari et al., 2000, Proc Natl Acad Sci USA 97: 9070-9075). This work examines if intact meningococci have a similar effect as purified porins. It was first determined that intact live meningococci do not induce apoptosis of HeLa cells and do not perturb mitochondrial physiology. This latter consideration is important as Neisserial porins affect the susceptibility of cells to apoptosis by preventing mitochondrial depolarization and cytochrome c release, events involved in the apoptosis cascade. Purified PorB or PorB from live bacteria were found to translocate into and interact with mitochondria. It was then determined whether treatment of HeLa cells with meningococci could prevent staurosporine-mediated apoptosis due to an effect of PorB on the mitochondrial parameters. Incubation of HeLa cells with live meningococci prevented staurosporine-induced apoptosis, as ascertained by measurements of mitochondrial potential, translocation of mitochondrial cytochrome c to the cytosol, caspases activation, and nuclear DNA degradation. These data are consistent with our previous findings that purified PorB associates with mitochondria and prevents apoptosis, and demonstrates that the mechanism by which whole meningococci protects cells from apoptosis is a result of direct interaction of neisserial porin with mitochondria.


Assuntos
Mitocôndrias/metabolismo , Neisseria meningitidis/patogenicidade , Porinas/metabolismo , Apoptose , Transporte Biológico , Células HeLa , Humanos , Neisseria meningitidis/metabolismo , Porinas/farmacologia , Estaurosporina/antagonistas & inibidores , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...