Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 14: 889-900, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30774340

RESUMO

PURPOSE: Selective internal radiation therapy (SIRT) is an effective treatment option for liver tumors, using Y-90-loaded polymer microspheres that are delivered via catheterization of the hepatic artery. Since Y-90 is a beta emitter and not conveniently imaged by standard clinical instrumentation, dosimetry is currently evaluated in each patient using a surrogate particle, 99mTechnetium-labeled macroaggregated albumin (99mTc-MAA). We report a new composite consisting of 99mTc-labeled nanoparticles attached to the same polymer microspheres as used for SIRT, which can be imaged with standard SPECT. METHODS: Carbon nanoparticles with an encapsulated core of 99mTc were coated with the polycation protamine sulfate to provide electrostatic attachment to anionic polystyrene sulfonate microspheres of different sizes (30, 12, and 8 µm). The in vivo stability of these composites was determined via intravenous injection and entrapment in the capillary network of normal rabbit lungs for up to 3 hours. Furthermore, we evaluated their biodistribution in normal rabbit livers, and livers implanted with VX2 tumors, following intrahepatic artery instillation. RESULTS: We report distribution tests for three different sizes of radiolabeled microspheres and compare the results with those obtained using 99mTc-MAA. Lung retention of the radiolabeled microspheres ranged from 72.8% to 92.9%, with the smaller diameter microspheres showing the lowest retention. Liver retention of the microspheres was higher, with retention in normal livers ranging from 99.2% to 99.8%, and in livers with VX2 tumors from 98.2% to 99.2%. The radiolabeled microspheres clearly demonstrated preferential uptake at tumor sites due to the increased arterial perfusion produced by angiogenesis. CONCLUSION: We describe a novel use of radiolabeled carbon nanoparticles to generate an imageable microsphere that is stable in vivo under the shear stress conditions of arterial networks. Following intra-arterial instillation in the normal rabbit liver, they distribute in a distinct segmented pattern, with the smaller microspheres extending throughout the organ in finer detail, while still being well retained within the liver. Furthermore, in livers hosting an implanted VX2 tumor, they reveal the increased arterial perfusion of tumor tissue resulting from angiogenesis. These novel composites may have potential as a more representative mimic of the vascular distribution of therapeutic microspheres in patients undergoing SIRT.


Assuntos
Artérias/diagnóstico por imagem , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/diagnóstico por imagem , Fígado/irrigação sanguínea , Pulmão/irrigação sanguínea , Microesferas , Tecnécio/química , Animais , Linhagem Celular Tumoral , Feminino , Injeções Intra-Arteriais , Injeções Intravenosas , Fígado/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Pulmão/diagnóstico por imagem , Masculino , Poliestirenos/química , Coelhos , Compostos Radiofarmacêuticos/química , Agregado de Albumina Marcado com Tecnécio Tc 99m/administração & dosagem , Agregado de Albumina Marcado com Tecnécio Tc 99m/química , Distribuição Tecidual , Resultado do Tratamento
2.
Biomaterials ; 39: 218-24, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25468373

RESUMO

Delivery of chemotherapeutic drugs to tumours by reformulation as nanoparticles has often been proposed as a means of facilitating increased selective uptake, exploiting the increased permeability of the tumour vasculature. However realisation of this improvement in drug delivery in cancer patients has met with limited success. We have compared tumour uptake of soluble Tc99m-pertechnetate and a colloid of nanoparticles with a Tc99m core, using both intra-venous and intra-arterial routes of administration in a rabbit liver VX2 tumour model. The radiolabelled nanoparticles were tested both in untreated and cationised form. The results from this tumour model in an internal organ show a marked advantage in intra-arterial administration over the intra-venous route, even for the soluble isotope. Tumour accumulation of nanoparticles from arterial administration was augmented by cationisation of the nanoparticle surface with histone proteins, which consistently facilitated selective accumulation within microvessels at the periphery of tumours.


Assuntos
Diagnóstico por Imagem/métodos , Infusões Intra-Arteriais/métodos , Injeções Intravenosas/métodos , Isótopos/administração & dosagem , Neoplasias Hepáticas/diagnóstico , Animais , Coelhos
3.
Biomaterials ; 34(22): 5670-6, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23623426

RESUMO

Recent findings on the role of circulating histone proteins in mediating acute lung injury prompted us to investigate whether there is a specific mechanism for accumulation of histones in the lungs. Binding sites for polycations are already known in the vasculature of the lungs, and we postulated that these could also be involved in histone accumulation, since histones have a high content of positively charged amino acids. Using a histone-coated colloid of a radiolabelled nanocomposite to track histone biodistribution with imaging techniques, it was found that histones bind avidly in the lungs of rabbits after intravenous injection. Blocking experiments with competing polycations in vivo characterised histone lung binding as dependent on a charge interaction with microvessel polyanions. Pretreatment of rabbits with a specific heparinase confirmed that the lung binding sites consist of heparan sulphate in the endothelial glycocalyx. A range of heparan sulphate analogues was accordingly shown to prevent histone accumulation in the lungs by neutralising histones in blood. These findings provide a rational basis for the design of polyanions that can prevent accumulation of cytotoxic histones in the lungs and thereby intervene at an early key step in the development of acute lung injury.


Assuntos
Capilares/metabolismo , Glicocálix/metabolismo , Heparitina Sulfato/metabolismo , Histonas/metabolismo , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Animais , Anticorpos Neutralizantes/metabolismo , Sítios de Ligação , Bovinos , Eletroforese em Gel de Poliacrilamida , Heparina Liase/metabolismo , Nanopartículas , Poliaminas/metabolismo , Polieletrólitos , Polissacarídeos/metabolismo , Ligação Proteica , Coelhos , Distribuição Tecidual
4.
Biomaterials ; 34(6): 1732-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23218595

RESUMO

Diagnostic imaging of the blood perfusion of the lungs is currently performed using particles of macro-aggregated albumin, which are mechanically arrested at limiting diameters of the capillary bed. While the proportion of blood flow obstructed is typically very low and temporary, it would seem more desirable to image lung perfusion in patients using a non-obstructive method, and using materials that avoid biological hazards. We have characterised the in vitro and in vivo properties of a colloid of a cationised radiolabelled nanocomposite. The nanoparticles comprise a Technetium-99m core encapsulated in graphitic carbon, and coated with low molecular weight poly-lysine to provide a strong charge-based affinity for the endothelial glycocalyx of the lung. Following intravenous injection in rabbits and cats, the nanoparticles rapidly distribute and localise in the lungs, thus enabling gamma camera imaging of lung perfusion. Repeat administration of this colloid in both species over several weeks indicates favourable biocompatibility.


Assuntos
Pulmão/anatomia & histologia , Nanopartículas , Cátions , Coloides , Humanos , Microscopia Eletrônica de Varredura , Tomografia Computadorizada de Emissão de Fóton Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...