Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38991997

RESUMO

Venom represents a key adaptation of many venomous predators, allowing them to immobilise prey quickly through chemical rather than physical warfare. Evolutionary arms races between prey and a predator are believed to be the main factor influencing the potency and composition of predatory venoms. Predators with narrowly restricted diets are expected to evolve specifically potent venom towards their focal prey, with lower efficacy on alternative prey. Here, we evaluate hypotheses on the evolution of prey-specific venom, focusing on the effect of restricted diet, prey defences, and prey resistance. Prey specificity as a potential evolutionary dead end is also discussed. We then provide an overview of the current knowledge on venom prey specificity, with emphasis on snakes, cone snails, and spiders. As the current evidence for venom prey specificity is still quite limited, we also overview the best approaches and methods for its investigation and provide a brief summary of potential model groups. Finally, possible applications of prey-specific toxins are discussed.

2.
J Nucl Med ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960711

RESUMO

Despite the recent advances in understanding the mechanisms of olfaction, no tools are currently available to noninvasively identify loss of smell. Because of the substantial increase in patients presenting with coronavirus disease 2019-related loss of smell, the pandemic has highlighted the urgent need to develop quantitative methods. Methods: Our group investigated the use of a novel fluorescent probe named Tsp1a-IR800P as a tool to diagnose loss of smell. Tsp1a-IR800P targets sodium channel 1.7, which plays a critical role in olfaction by aiding the signal propagation to the olfactory bulb. Results: Intuitively, we have identified that conditions leading to loss of smell, including chronic inflammation and coronavirus disease 2019, correlate with the downregulation of sodium channel 1.7 expression in the olfactory epithelium, both at the transcript and at the protein levels. We demonstrated that lower Tsp1a-IR800P fluorescence emissions significantly correlate with loss of smell in live animals-thus representing a potential tool for its semiquantitative assessment. Currently available methods rely on delayed subjective behavioral studies. Conclusion: This method could aid in significantly improving preclinical and clinical studies by providing a way to objectively diagnose loss of smell and therefore aid the development of therapeutic interventions.

3.
Sci Rep ; 14(1): 14172, 2024 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898081

RESUMO

Zygaenoidea is a superfamily of lepidopterans containing many venomous species, including the Limacodidae (nettle caterpillars) and Megalopygidae (asp caterpillars). Venom proteomes have been recently documented for several species from each of these families, but further data are required to understand the evolution of venom in Zygaenoidea. In this study, we examined the 'electric' caterpillar from North-Eastern Australia, a limacodid caterpillar densely covered in venomous spines. We used DNA barcoding to identify this caterpillar as the larva of the moth Comana monomorpha (Turner, 1904). We report the clinical symptoms of C. monomorpha envenomation, which include acute pain, and erythema and oedema lasting for more than a week. Combining transcriptomics of venom spines with proteomics of venom harvested from the spine tips revealed a venom markedly different in composition from previously examined limacodid venoms that are rich in peptides. In contrast, the venom of C. monomorpha is rich in aerolysin-like proteins similar to those found in venoms of asp caterpillars (Megalopygidae). Consistent with this composition, the venom potently permeabilises sensory neurons and human neuroblastoma cells. This study highlights the diversity of venom composition in Limacodidae.


Assuntos
Filogenia , Animais , Austrália , Larva , Proteômica/métodos , Venenos de Artrópodes/genética , Venenos de Artrópodes/metabolismo , Mariposas/genética , Permeabilidade da Membrana Celular , Humanos , Mordeduras e Picadas , Proteoma
4.
Structure ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38889720

RESUMO

Disulfide-rich peptides such as defensins play diverse roles in immunity and ion channel modulation, as well as constituting the bioactive components of many animal venoms. We investigated the structure and bioactivity of U-RDTX-Pp19, a peptide previously discovered in venom of the assassin bug Pristhesancus plagipennis. Recombinant Pp19 (rPp19) was found to possess insecticidal activity when injected into Drosophila melanogaster. A bioinformatic search revealed that domains homologous to Pp19 are produced by assassin bugs and diverse other arthropods. rPp19 co-eluted with native Pp19 isolated from P. plagipennis, which we found is more abundant in hemolymph than venom. We solved the three-dimensional structure of rPp19 using 2D 1H NMR spectroscopy, finding that it adopts a disulfide-stabilized structure highly similar to known trans-defensins, with the same cystine connectivity as human α-defensin (I-VI, II-IV, and III-V). The structure of Pp19 is unique among reported structures of arthropod peptides.

5.
bioRxiv ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38617358

RESUMO

Surgeries and trauma result in traumatic and iatrogenic nerve damage that can result in a debilitating condition that approximately affects 189 million individuals worldwide. The risk of nerve injury during oncologic surgery is increased due to tumors displacing normal nerve location, blood turbidity, and past surgical procedures, which complicate even an experienced surgeon's ability to precisely locate vital nerves. Unfortunately, there is a glaring absence of contrast agents to assist surgeons in safeguarding vital nerves. To address this unmet clinical need, we leveraged the abundant expression of the voltage-gated sodium channel 1.7 (NaV1.7) as an intraoperative marker to access peripheral nerves in vivo, and visualized nerves for surgical guidance using a fluorescently-tagged version of a potent NaV1.7-targeted peptide, Tsp1a, derived from a Peruvian tarantula. We characterized the expression of NaV1.7 in sensory and motor peripheral nerves across mouse, primate, and human specimens and demonstrated universal expression. We synthesized and characterized a total of 10 fluorescently labeled Tsp1a-peptide conjugates to delineate nerves. We tested the ability of these peptide-conjugates to specifically accumulate in mouse nerves with a high signal-to-noise ratio in vivo. Using the best-performing candidate, Tsp1a-IR800, we performed thyroidectomies in non-human primates and demonstrated successful demarcation of the recurrent laryngeal and vagus nerves, which are commonly subjected to irreversible damage. The ability of Tsp1a to enhance nerve contrast during surgery provides opportunities to minimize nerve damage and revolutionize standards of care across various surgical specialties.

6.
Microb Biotechnol ; 17(4): e14468, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38635158

RESUMO

The sweet potato whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is responsible for significant crop losses and presents one of the greatest challenges for global agricultural pest management. Management of whitefly populations and associated plant viral diseases is hindered by widespread whitefly resistance to chemical insecticides. An alternative control approach involves the use of insect-specific neurotoxins, but these require delivery from the whitefly gut into the haemocoel. Here we demonstrate that the coat protein (CP) of a begomovirus, Tomato yellow leaf curl virus, is sufficient for delivery of fused proteins into the whitefly haemocoel without virion assembly. Following feeding on the recombinant CP-P-mCherry fusion (where -P- is a proline-rich linker), mCherry fluorescence was detected in the dorsal aorta and pericardial cells of the whitefly, but not in those of whitefly fed on negative control treatments, indicating effective CP-mediated delivery of mCherry into the whitefly haemocoel. Significant mortality was observed in whiteflies fed on a fusion of CP-P to the insect-specific neurotoxin Hv1a, but not in whiteflies fed on CP-P fused to a disarmed Hv1a mutant. Begomovirus coat protein - insect neurotoxin fusions hold considerable potential for transgenic resistance to whitefly providing valuable tools for whitefly management.


Assuntos
Hemípteros , Vírus de Plantas , Animais , Neurotoxinas , Agricultura , Fluorescência
7.
ACS Pharmacol Transl Sci ; 7(4): 1043-1054, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38638162

RESUMO

Activation of acid-sensing ion channel 1a (ASIC1a) plays a major role in mediating acidosis-induced neuronal injury following a stroke. Therefore, the inhibition of ASIC1a is a potential therapeutic avenue for the treatment of stroke. Venom-peptide Hi1a, a selective and highly potent ASIC1a inhibitor, reduces the infarct size and functional deficits when injected into the brain after stroke in rodents. However, its efficacy when administered using a clinically relevant route of administration remains to be established. Therefore, the current investigation aims to examine the efficacy of systemically administered Hi1a, using two different models of stroke in different species. Mice were subjected to the filament model of middle cerebral artery occlusion (MCAO) and treated with Hi1a systemically using either a single- or multiple-dosing regimen. 24 h poststroke, mice underwent functional testing, and the brain infarct size was assessed. Rats were subjected to endothelin-1 (ET-1)-induced MCAO and treated with Hi1a intravenously 2 h poststroke. Rats underwent functional tests prior to and for 3 days poststroke, when infarct volume was assessed. Mice receiving Hi1a did not show any improvements in functional outcomes, despite a trend toward reduced infarct size. This trend for reduced infarct size in mice was consistent regardless of the dosing regimen. There was also a trend toward lower infarct size in rats treated with Hi1a. More specifically, Hi1a reduced the amount of damage occurring within the somatosensory cortex, which was associated with an improved sensorimotor function in Hi1a-treated rats. Thus, this study suggests that Hi1a or more brain-permeable ASIC1a inhibitors are a potential stroke treatment.

8.
Toxicon X ; 21: 100184, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38389571

RESUMO

Venoms comprise highly sophisticated bioactive molecules modulating ion channels, receptors, coagulation factors, and the cellular membranes. This array of targets and bioactivities requires advanced high-content bioassays to facilitate the development of novel envenomation treatments and biotechnological and pharmacological agents. In response to the existing gap in venom research, we developed a cutting-edge fluorescence-based high-throughput and high-content cellular assay. This assay enables the simultaneous identification of prevalent cellular activities induced by venoms such as membrane lysis, pore formation, and ion channel modulation. By integrating intracellular calcium with extracellular nucleic acid measurements, we have successfully distinguished these venom mechanisms within a single cellular assay. Our high-content bioassay was applied across three cell types exposed to venom components representing lytic, ion pore-forming or ion channel modulator toxins. Beyond unveiling distinct profiles for these action mechanisms, we found that the pore-forming latrotoxin α-Lt1a prefers human neuroblastoma to kidney cells and cardiomyocytes, while the lytic bee peptide melittin is not selective. Furthermore, evaluation of snake venoms showed that Elapid species induced rapid membrane lysis, while Viper species showed variable to no activity on neuroblastoma cells. These findings underscore the ability of our high-content bioassay to discriminate between clades and interspecific traits, aligning with clinical observations at venom level, beyond discriminating among ion pore-forming, membrane lysis and ion channel modulation. We hope our research will expedite the comprehension of venom biology and the diversity of toxins that elicit cytotoxic, cardiotoxic and neurotoxic effects, and assist in identifying venom components that hold the potential to benefit humankind.

9.
J Biol Chem ; 300(1): 105577, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110035

RESUMO

Harvester ants (genus Pogonomyrmex) are renowned for their stings which cause intense, long-lasting pain, and other neurotoxic symptoms in vertebrates. Here, we show that harvester ant venoms are relatively simple and composed largely of peptide toxins. One class of peptides is primarily responsible for the long-lasting local pain of envenomation via activation of peripheral sensory neurons. These hydrophobic, cysteine-free peptides potently modulate mammalian voltage-gated sodium (NaV) channels, reducing the voltage threshold for activation and inhibiting channel inactivation. These toxins appear to have evolved specifically to deter vertebrates.


Assuntos
Formigas , Mordeduras e Picadas , Dor , Peptídeos , Toxinas Biológicas , Bloqueadores do Canal de Sódio Disparado por Voltagem , Canais de Sódio Disparados por Voltagem , Animais , Formigas/patogenicidade , Formigas/fisiologia , Mordeduras e Picadas/complicações , Dor/induzido quimicamente , Dor/complicações , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/toxicidade , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Toxinas Biológicas/química , Toxinas Biológicas/farmacologia , Toxinas Biológicas/toxicidade , Vertebrados , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/toxicidade , Canais de Sódio Disparados por Voltagem/metabolismo
11.
PLoS One ; 18(11): e0289053, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37939057

RESUMO

Following a spinal cord injury (SCI), secondary damage mechanisms are triggered that cause inflammation and cell death. A key component of this secondary damage is a reduction in local blood flow that initiates a well-characterised ischemic cascade. Downstream hypoxia and acidosis activate acid sensing ion channel 1a (ASIC1a) to trigger cell death. We recently showed that administration of a potent venom-derived inhibitor of ASIC1a, Hi1a, leads to tissue sparing and improved functional recovery when delivered up to 8 h after ischemic stroke. Here, we use whole-cell patch-clamp electrophysiology in a spinal cord slice preparation to assess the effect of acute ASIC1a inhibition, via a single dose of Hi1a, on intrinsic membrane properties and excitatory synaptic transmission long-term after a spinal cord hemisection injury. We focus on a population of interneurons (INs) in the deep dorsal horn (DDH) that play a key role in relaying sensory information to downstream motoneurons. DDH INs in mice treated with Hi1a 1 h after a spinal cord hemisection showed no change in active or passive intrinsic membrane properties measured 4 weeks after SCI. DDH INs, however, exhibit significant changes in the kinetics of spontaneous excitatory postsynaptic currents after a single dose of Hi1a, when compared to naive animals (unlike SCI mice). Our data suggest that acute ASIC1a inhibition exerts selective effects on excitatory synaptic transmission in DDH INs after SCI via specific ligand-gated receptor channels, and has no effect on other voltage-activated channels long-term after SCI.


Assuntos
Canais Iônicos Sensíveis a Ácido , Traumatismos da Medula Espinal , Camundongos , Animais , Corno Dorsal da Medula Espinal/fisiologia , Transmissão Sináptica/fisiologia , Interneurônios/fisiologia , Medula Espinal , Células do Corno Posterior/fisiologia
12.
Front Pharmacol ; 14: 1249336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693897

RESUMO

Ion channels play a crucial role in diverse physiological processes, including neurotransmission and muscle contraction. Venomous creatures exploit the vital function of ion channels by producing toxins in their venoms that specifically target these ion channels to facilitate prey capture upon a bite or a sting. Envenoming can therefore lead to ion channel dysregulation, which for humans can result in severe medical complications that often necessitate interventions such as antivenom administration. Conversely, the discovery of highly potent and selective venom toxins with the capability of distinguishing between different isoforms and subtypes of ion channels has led to the development of beneficial therapeutics that are now in the clinic. This review encompasses the historical evolution of electrophysiology methodologies, highlighting their contributions to venom and antivenom research, including venom-based drug discovery and evaluation of antivenom efficacy. By discussing the applications and advancements in patch-clamp techniques, this review underscores the profound impact of electrophysiology in unravelling the intricate interplay between ion channels and venom toxins, ultimately leading to the development of drugs for envenoming and ion channel-related pathologies.

13.
Proteomics ; 23(20): e2300204, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37528493

RESUMO

Ochrogaster lunifer (Lepidoptera: Notodontidae) is an Australian processionary caterpillar with detachable urticating setae that have a defensive function. These true setae induce inflammation when they contact human skin, and equine foetal loss syndrome if they are accidentally ingested by gravid horses. We used transcriptomics and proteomics to identify proteins and peptides present in and on urticating setae, which may include toxins that contribute to inflammation and/or foetal loss syndromes. This process identified 37 putative toxins, including multiple homologues of the honeybee venom peptide secapin, and proteins with similarity to odorant binding proteins, arylphorins, and the insect immune modulator Diedel. This work identifies candidate molecules that may contribute to the adverse effects of processionary caterpillar setae on human and animal health.

14.
Proc Natl Acad Sci U S A ; 120(29): e2305871120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428925

RESUMO

Larvae of the genus Megalopyge (Lepidoptera: Zygaenoidea: Megalopygidae), known as asp or puss caterpillars, produce defensive venoms that cause severe pain. Here, we present the anatomy, chemistry, and mode of action of the venom systems of caterpillars of two megalopygid species, the Southern flannel moth Megalopyge opercularis and the black-waved flannel moth Megalopyge crispata. We show that megalopygid venom is produced in secretory cells that lie beneath the cuticle and are connected to the venom spines by canals. Megalopygid venoms consist of large aerolysin-like pore-forming toxins, which we have named megalysins, and a small number of peptides. The venom system differs markedly from those of previously studied venomous zygaenoids of the family Limacodidae, suggestive of an independent origin. Megalopygid venom potently activates mammalian sensory neurons via membrane permeabilization and induces sustained spontaneous pain behavior and paw swelling in mice. These bioactivities are ablated by treatment with heat, organic solvents, or proteases, indicating that they are mediated by larger proteins such as the megalysins. We show that the megalysins were recruited as venom toxins in the Megalopygidae following horizontal transfer of genes from bacteria to the ancestors of ditrysian Lepidoptera. Megalopygids have recruited aerolysin-like proteins as venom toxins convergently with centipedes, cnidarians, and fish. This study highlights the role of horizontal gene transfer in venom evolution.


Assuntos
Mordeduras e Picadas , Mariposas , Toxinas Biológicas , Animais , Camundongos , Transferência Genética Horizontal , Mariposas/genética , Larva/genética , Peçonhas , Dor , Mamíferos
15.
Toxins (Basel) ; 15(7)2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37505687

RESUMO

Effective control of diseases transmitted by Aedes aegypti is primarily achieved through vector control by chemical insecticides. However, the emergence of insecticide resistance in A. aegypti undermines current control efforts. Arachnid venoms are rich in toxins with activity against dipteran insects and we therefore employed a panel of 41 spider and 9 scorpion venoms to screen for mosquitocidal toxins. Using an assay-guided fractionation approach, we isolated two peptides from the venom of the tarantula Lasiodora klugi with activity against adult A. aegypti. The isolated peptides were named U-TRTX-Lk1a and U-TRTX-Lk2a and comprised 41 and 49 residues with monoisotopic masses of 4687.02 Da and 5718.88 Da, respectively. U-TRTX-Lk1a exhibited an LD50 of 38.3 pmol/g when injected into A. aegypti and its modeled structure conformed to the inhibitor cystine knot motif. U-TRTX-Lk2a has an LD50 of 45.4 pmol/g against adult A. aegypti and its predicted structure conforms to the disulfide-directed ß-hairpin motif. These spider-venom peptides represent potential leads for the development of novel control agents for A. aegypti.


Assuntos
Venenos de Aranha , Peçonhas , Animais , Peçonhas/farmacologia , Brasil , Mosquitos Vetores , Peptídeos/farmacologia , Insetos , Venenos de Aranha/toxicidade , Venenos de Aranha/química
16.
Org Lett ; 25(24): 4439-4444, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37306339

RESUMO

Hi1a is a naturally occurring bivalent spider-venom peptide that is being investigated as a promising molecule for limiting ischemic damage in strokes, myocardial infarction, and organ transplantation. However, the challenges associated with the synthesis and production of the peptide in large quantities have slowed the progress in this area; hence, access to synthetic Hi1a is an essential milestone for the development of Hi1a as a pharmacological tool and potential therapeutic.


Assuntos
Canais Iônicos Sensíveis a Ácido , Peptídeos , Ligadura , Peptídeos/química , Venenos de Aranha/metabolismo , Venenos de Aranha/farmacologia , AVC Isquêmico/fisiopatologia , Infarto do Miocárdio/fisiopatologia
17.
J Am Chem Soc ; 145(26): 14276-14287, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37339504

RESUMO

We report an innovative approach to producing bacteriochlorins (bacs) via formal cycloaddition by subjecting a porphyrin to a trimolecular reaction. Bacs are near-infrared probes with the intrinsic ability to serve in multimodal imaging. However, despite their ability to fluoresce and chelate metal ions, existing bacs have thus offered limited ability to label biomolecules for target specificity or have lacked chemical purity, limiting their use in bio-imaging. In this work, bacs allowed a precise and controlled appending of clickable linkers, lending the porphyrinoids substantially more chemical stability, clickability, and solubility, rendering them more suitable for preclinical investigation. Our bac probes enable the targeted use of biomolecules in fluorescence imaging and Cerenkov luminescence for guided intraoperative imaging. Bacs' capacity for chelation provides opportunities for use in non-invasive positron emission tomography/computed tomography. Herein, we report the labeling of bacs with Hs1a, a (NaV1.7)-sodium-channel-binding peptide derived from the Chinese tarantula Cyriopagopus schmidti to yield Bac-Hs1a and radiolabeled Hs1a, which shuttles our bac sensor(s) to mouse nerves. In vivo, the bac sensor allowed us to observe high signal-to-background ratios in the nerves of animals injected with fluorescent Bac-Hs1a and radiolabeled Hs1a in all imaging modes. This study demonstrates that Bac-Hs1a and [64Cu]Cu-Bac-Hs1a accumulate in peripheral nerves, providing contrast and utility in the preclinical space. For the chemistry and bio-imaging fields, this study represents an exciting starting point for the modular manipulation of bacs, their development and use as probes for diagnosis, and their deployment as formidable multiplex nerve-imaging agents for use in routine imaging experiments.


Assuntos
Porfirinas , Animais , Camundongos
18.
Nat Commun ; 14(1): 2977, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221205

RESUMO

Stings of certain ant species (Hymenoptera: Formicidae) can cause intense, long-lasting nociception. Here we show that the major contributors to these symptoms are venom peptides that modulate the activity of voltage-gated sodium (NaV) channels, reducing their voltage threshold for activation and inhibiting channel inactivation. These peptide toxins are likely vertebrate-selective, consistent with a primarily defensive function. They emerged early in the Formicidae lineage and may have been a pivotal factor in the expansion of ants.


Assuntos
Venenos de Formiga , Formigas , Toxinas Biológicas , Animais , Dor , Canais de Sódio , Vertebrados
19.
BMC Biol ; 21(1): 121, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226201

RESUMO

BACKGROUND: The ShK toxin from Stichodactyla helianthus has established the therapeutic potential of sea anemone venom peptides, but many lineage-specific toxin families in Actiniarians remain uncharacterised. One such peptide family, sea anemone 8 (SA8), is present in all five sea anemone superfamilies. We explored the genomic arrangement and evolution of the SA8 gene family in Actinia tenebrosa and Telmatactis stephensoni, characterised the expression patterns of SA8 sequences, and examined the structure and function of SA8 from the venom of T. stephensoni. RESULTS: We identified ten SA8-family genes in two clusters and six SA8-family genes in five clusters for T. stephensoni and A. tenebrosa, respectively. Nine SA8 T. stephensoni genes were found in a single cluster, and an SA8 peptide encoded by an inverted SA8 gene from this cluster was recruited to venom. We show that SA8 genes in both species are expressed in a tissue-specific manner and the inverted SA8 gene has a unique tissue distribution. While the functional activity of the SA8 putative toxin encoded by the inverted gene was inconclusive, its tissue localisation is similar to toxins used for predator deterrence. We demonstrate that, although mature SA8 putative toxins have similar cysteine spacing to ShK, SA8 peptides are distinct from ShK peptides based on structure and disulfide connectivity. CONCLUSIONS: Our results provide the first demonstration that SA8 is a unique gene family in Actiniarians, evolving through a variety of structural changes including tandem and proximal gene duplication and an inversion event that together allowed SA8 to be recruited into the venom of T. stephensoni.


Assuntos
Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/genética , Genômica , Inversão Cromossômica , Cisteína , Dissulfetos
20.
Biochem Pharmacol ; 213: 115598, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37201876

RESUMO

Limacodidae is a family of lepidopteran insects comprising >1500 species. More than half of these species produce pain-inducing defensive venoms in the larval stage, but little is known about their venom toxins. Recently, we characterised proteinaceous toxins from the Australian limacodid caterpillar Doratifera vulnerans, but it is unknown if the venom of this species is typical of other Limacodidae. Here, we use single animal transcriptomics and venom proteomics to investigate the venom of an iconic limacodid, the North American saddleback caterpillar Acharia stimulea. We identified 65 venom polypeptides, grouped into 31 different families. Neurohormones, knottins, and homologues of the immune signaller Diedel make up the majority of A.stimulea venom, indicating strong similarities to D. vulnerans venom, despite the large geographic separation of these caterpillars. One notable difference is the presence of RF-amide peptide toxins in A. stimulea venom. Synthetic versions of one of these RF-amide toxins potently activated the human neuropeptide FF1 receptor, displayed insecticidal activity when injected into Drosophila melanogaster, and moderately inhibited larval development of the parasitic nematode Haemonchus contortus. This study provides insights into the evolution and activity of venom toxins in Limacodidae, and provides a platform for future structure-function characterisation of A.stimulea peptide toxins.


Assuntos
Mariposas , Peçonhas , Humanos , Animais , Peçonhas/química , Amidas , Drosophila melanogaster , Austrália , Peptídeos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...