Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stud Health Technol Inform ; 196: 135-41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24732494

RESUMO

The rapid adoption of robotic assisted surgery challenges the pace at which adequate robotic training can occur due to access limitations to the da Vinci robot. Thirty medical students completed a randomized controlled trial evaluating whether the Raven robot could be used as an alternative training tool for the Fundamentals of Laparoscopic Surgery (FLS) block transfer task on the da Vinci robot. Two groups, one trained on the da Vinci and one trained on the Raven, were tested on a criterion FLS block transfer task on the da Vinci. After robotic FLS block transfer proficiency training there was no statistically significant difference between path length (p=0.39) and economy of motion scores (p=0.06) between the two groups, but those trained on the da Vinci did have faster task times (p=0.01). These results provide evidence for the value of using the Raven robot for training prior to using the da Vinci surgical system for similar tasks.


Assuntos
Competência Clínica , Laparoscopia/métodos , Procedimentos Cirúrgicos Robóticos/instrumentação , Adulto , Feminino , Humanos , Masculino , Estudantes de Medicina , Adulto Jovem
2.
IEEE Trans Biomed Eng ; 60(4): 954-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23204264

RESUMO

The Raven-II is a platform for collaborative research on advances in surgical robotics. Seven universities have begun research using this platform. The Raven-II system has two 3-DOF spherical positioning mechanisms capable of attaching interchangeable four DOF instruments. The Raven-II software is based on open standards such as Linux and ROS to maximally facilitate software development. The mechanism is robust enough for repeated experiments and animal surgery experiments, but is not engineered to sufficient safety standards for human use. Mechanisms in place for interaction among the user community and dissemination of results include an electronic forum, an online software SVN repository, and meetings and workshops at major robotics conferences.


Assuntos
Internet , Robótica/instrumentação , Software , Cirurgia Assistida por Computador/instrumentação , Pesquisa Biomédica , Desenho de Equipamento , Humanos
3.
Artigo em Inglês | MEDLINE | ID: mdl-19964184

RESUMO

A teleoperated surgical robotic system allows surgical procedures to be conducted across long distances while utilizing wired and wireless communication with a wide spectrum of performance that may affect the outcome. An open architecture portable surgical robotic system (Raven) was developed for both open and minimally invasive surgery. The system has been the subject of an intensive telesurgical experimental protocol aimed at exploring the boundaries of the system and surgeon performance during a series of field experiments in extreme environments (desert and underwater) teleportation between US, Europe, and Japan as well as lab experiments under synthetic fixed time delay. One standard task (block transfer emulating tissue manipulation) of the Fundamentals of Laparoscopic Surgery (FLS) training kit was used for the experimental protocol. Network characterization indicated a typical time delay in the range of 16-172 ms in field experiments. The results of the lab experiments showed that the completion time of the task as well as the length of the tool tip trajectory significantly increased (alpha< 0.02) as time delay increased in the range of 0-0.5 sec increased. For teleoperation with a time delay of 0.25s and 0.5s the task completion time was lengthened by a factor of 1.45 and 2.04 with respect to no time delay, whereas the length of the tools' trajectory was increased by a factor of 1.28 and 1.53 with respect to no time delay. There were no statistical differences between experienced surgeons and non-surgeons in the number of errors (block drooping) as well as the completion time and the tool tip path length at different time delays.


Assuntos
Laparoscopia/métodos , Robótica/métodos , Telemedicina/métodos , Adolescente , Adulto , Florida , Humanos , Fatores de Tempo , Washington , Adulto Jovem
4.
Stud Health Technol Inform ; 132: 263-5, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18391301

RESUMO

The Society of American Gastrointestinal Endoscopic Surgeons (SAGES) Fundamentals of Laparoscopic Surgery (FLS) program contains curriculum that includes both a cognitive and psychomotor skills. In this research the use of FLS Block Transfer task is used to evaluate the performance of surgeons' teleoperating the University of Washington Surgical robot. The use of the FLS Trainer Box and accessories kit provides a well-defined series of tasks that can be repeated by any researchers working in the field of surgical robotics so that systems can be evaluated using a common method.


Assuntos
Endoscopia Gastrointestinal , Cirurgia Geral/educação , Robótica/instrumentação , Telemedicina , Humanos , Desempenho Psicomotor , Estados Unidos
5.
Stud Health Technol Inform ; 125: 313-5, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17377292

RESUMO

Robotically assisted surgery stands to further revolutionize the medical field and provide patients with more effective healthcare. Most robotically assisted surgeries are teleoperated from the surgeon console to the patient where both ends of the system are located in the operating room. The challenge of surgical teleoperation across a long distance was already demonstrated through a wired communication network in 2001. New development has shifted towards deploying a surgical robot system in mobile settings and/or extreme environments such as the battlefield or natural disaster areas with surgeons operating wirelessly. As a collaborator in the HAPs/MRT (High Altitude Platform/Mobile Robotic Telesurgery) project, The University of Washington surgical robot was deployed in the desert of Simi Valley, CA for telesurgery experiments on an inanimate model via wireless communication through an Unmanned Aerial Vehicle (UAV). The surgical tasks were performed telerobotically with a maximum time delay between the surgeon's console (master) and the surgical robot (slave) of 20 ms for the robotic control signals and 200 ms for the video stream. This was our first experiment in the area of Mobile Robotic Telesurgery (MRT). The creation and initial testing of a deployable surgical robot system will facilitate growth in this area eventually leading to future systems saving human lives in disaster areas, on the battlefield or in other remote environments.


Assuntos
Aeronaves , Cirurgia Geral , Robótica , California
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...