Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(9)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37765239

RESUMO

Bone fractures are common in the geriatric population and pose a great economic burden worldwide. While traditional methods for repairing bone defects have primarily been autografts, there are several drawbacks limiting its use. Bone graft substitutes have been used as alternative strategies to improve bone healing. However, there remain several impediments to achieving the desired healing outcomes. Injectable hydrogels have become attractive scaffold materials for bone regeneration, given their high performance in filling irregularly sized bone defects and their ability to encapsulate cells and bioactive molecules and mimic the native ECM of bone. We investigated the use of an injectable chitosan-based hydrogel scaffold to promote the differentiation of preosteoblasts in vitro. The hydrogels were characterized by evaluating cell homogeneity, cell viability, rheological and mechanical properties, and differentiation ability of preosteoblasts in hydrogel scaffolds. Cell-laden hydrogel scaffolds exhibited shear thinning behavior and the ability to maintain shape fidelity after injection. The CNC-CS hydrogels exhibited higher mechanical strength and significantly upregulated the osteogenic activity and differentiation of preosteoblasts, as shown by ALP activity assays and histological analysis of hydrogel scaffolds. These results suggest that this injectable hydrogel is suitable for cell survival, can promote osteogenic differentiation of preosteoblasts, and structurally support new bone growth.

2.
Pharmaceutics ; 14(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36297678

RESUMO

Glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults and despite recent advances in treatment modalities, GBM remains incurable. Injectable hydrogel scaffolds are a versatile delivery system that can improve delivery of drug and cell therapeutics for GBM. In this report, we investigated an injectable nanocellulose/chitosan-based hydrogel scaffold for neural stem cell encapsulation and delivery. Hydrogels were prepared using thermogelling beta-glycerophosphate (BGP) and hydroxyethyl cellulose (HEC), chitosan (CS), and cellulose nanocrystals (CNCs). We evaluated the impact of neural stem cells on hydrogel gelation kinetics, microstructures, and degradation. Furthermore, we investigated the biomaterial effects on cell viability and functionality. We demonstrated that the incorporation of cells at densities of 1, 5 and 10 million does not significantly impact rheological and physical properties CS scaffolds. However, addition of CNCs significantly prolonged hydrogel degradation when cells were seeded at 5 and 10 million per 1 mL hydrogel. In vitro cell studies demonstrated high cell viability, release of TRAIL at therapeutic concentrations, and effective tumor cell killing within 72 h. The ability of these hydrogel scaffolds to support stem cell encapsulation and viability and maintain stem cell functionality makes them an attractive cell delivery system for local treatment of post-surgical cancers.

3.
Pharmaceutics ; 14(3)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35335991

RESUMO

Due to the versatility of the in situ forming implant (ISFI) drug delivery system, it is crucial to understand the effects of formulation parameters for clinical translation. We utilized ultrasound imaging and pharmacokinetics (PK) in mice to understand the impact of administration route, injection volume, and drug loading on ISFI formation, degradation, and drug release in mice. Placebo ISFIs injected subcutaneously (SQ) with smaller volumes (40 µL) exhibited complete degradation within 30-45 days, compared to larger volumes (80 µL), which completely degraded within 45-60 days. However, all dolutegravir (DTG)-loaded ISFIs along the range of injection volumes tested (20-80 µL) were present at 90 days post-injection, suggesting that DTG can prolong ISFI degradation. Ultrasound imaging showed that intramuscular (IM) ISFIs flattened rapidly post administration compared to SQ, which coincides with the earlier Tmax for drug-loaded IM ISFIs. All mice exhibited DTG plasma concentrations above four times the protein-adjusted 90% inhibitory concentration (PA-IC90) throughout the entire 90 days of the study. ISFI release kinetics best fit to zero order or diffusion-controlled models. When total administered dose was held constant, there was no statistical difference in drug exposure regardless of the route of administration or number of injections.

4.
Pharmaceutics ; 13(7)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34371744

RESUMO

Gliomas are the most common type of brain tumor that occur in adults and children. Glioblastoma multiforme (GBM) is the most common, aggressive form of brain cancer in adults and is universally fatal. The current standard-of-care options for GBM include surgical resection, radiotherapy, and concomitant and/or adjuvant chemotherapy. One of the major challenges that impedes success of chemotherapy is the presence of the blood-brain barrier (BBB). Because of the tightly regulated BBB, immune surveillance in the central nervous system (CNS) is poor, contributing to unregulated glioma cell growth. This review gives a comprehensive overview of the latest advances in treatment of GBM with emphasis on the significant advances in immunotherapy and novel therapeutic delivery strategies to enhance treatment for GBM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...