Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Ecology ; 103(10): e3775, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35661139

RESUMO

Managing wildlife populations in the face of global change requires regular data on the abundance and distribution of wild animals, but acquiring these over appropriate spatial scales in a sustainable way has proven challenging. Here we present the data from Snapshot USA 2020, a second annual national mammal survey of the USA. This project involved 152 scientists setting camera traps in a standardized protocol at 1485 locations across 103 arrays in 43 states for a total of 52,710 trap-nights of survey effort. Most (58) of these arrays were also sampled during the same months (September and October) in 2019, providing a direct comparison of animal populations in 2 years that includes data from both during and before the COVID-19 pandemic. All data were managed by the eMammal system, with all species identifications checked by at least two reviewers. In total, we recorded 117,415 detections of 78 species of wild mammals, 9236 detections of at least 43 species of birds, 15,851 detections of six domestic animals and 23,825 detections of humans or their vehicles. Spatial differences across arrays explained more variation in the relative abundance than temporal variation across years for all 38 species modeled, although there are examples of significant site-level differences among years for many species. Temporal results show how species allocate their time and can be used to study species interactions, including between humans and wildlife. These data provide a snapshot of the mammal community of the USA for 2020 and will be useful for exploring the drivers of spatial and temporal changes in relative abundance and distribution, and the impacts of species interactions on daily activity patterns. There are no copyright restrictions, and please cite this paper when using these data, or a subset of these data, for publication.


Assuntos
COVID-19 , Animais , Animais Selvagens , Aves , COVID-19/epidemiologia , Humanos , Mamíferos , Pandemias , Estados Unidos
2.
Ecol Evol ; 11(12): 8170-8182, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34188878

RESUMO

Most studies on how rising temperatures will impact terrestrial ectotherms have focused on single populations or multiple sympatric species. Addressing the thermal and energetic implications of climatic variation on multiple allopatric populations of a species will help us better understand how a species may be impacted by altered climates.We used eight years of thermal and behavioral data collected from four populations of Pacific rattlesnakes (Crotalus oreganus) living in climatically distinct habitat types (inland and coastal) to determine the field-active and laboratory-preferred body temperatures, thermoregulatory metrics, and maintenance energetic requirements of snakes from each population.Physical models showed that thermal quality was best at coastal sites, but inland snakes thermoregulated more accurately despite being in more thermally constrained environments. Projected increases of 1 and 2°C in ambient temperature result in an increase in overall thermal quality at both coastal and inland sites.Population differences in modeled standard metabolic rate estimates were driven by body size and not field-active body temperature, with inland snakes requiring 1.6× more food annually than coastal snakes.All snakes thermoregulated with high accuracy, suggesting that small increases in ambient temperature are unlikely to impact the maintenance energetic requirements of individual snakes and that some species of large-bodied reptiles may be robust to modest thermal perturbations under conservative climate change predictions. ​.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...