Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Earth Surf ; 127(4): e2021JF006505, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35864950

RESUMO

We use satellite and airborne altimetry to estimate annual mass changes of the Greenland Ice Sheet. We estimate ice loss corresponding to a sea-level rise of 6.9 ± 0.4 mm from April 2011 to April 2020, with a highest annual ice loss rate of 1.4 mm/yr sea-level equivalent from April 2019 to April 2020. On a regional scale, our annual mass loss timeseries reveals 10-15 m/yr dynamic thickening at the terminus of Jakobshavn Isbræ from April 2016 to April 2018, followed by a return to dynamic thinning. We observe contrasting patterns of mass loss acceleration in different basins across the ice sheet and suggest that these spatiotemporal trends could be useful for calibrating and validating prognostic ice sheet models. In addition to resolving the spatial and temporal fingerprint of Greenland's recent ice loss, these mass loss grids are key for partitioning contemporary elastic vertical land motion from longer-term glacial isostatic adjustment (GIA) trends at GPS stations around the ice sheet. Our ice-loss product results in a significantly different GIA interpretation from a previous ice-loss product.

2.
Cryosphere ; 12(12): 3813-3825, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31217911

RESUMO

Rapid changes in thickness and velocity have been observed at many marine-terminating glaciers in Greenland, impacting the volume of ice they export, or discharge, from the ice sheet. While annual estimates of ice-sheet wide discharge have been previously derived, higher-resolution records are required to fully constrain the temporal response of these glaciers to various climatic and mechanical drivers that vary in sub-annual scales. Here we sample outlet glaciers wider than 1 km (N = 230) to derive the first continuous, ice-sheet wide record of total ice sheet discharge for the 2000-2016 period, resolving a seasonal variability of 6 %. The amplitude of seasonality varies spatially across the ice sheet from 5 % in the southeastern region to 9 % in the northwest region. We analyze seasonal to annual variability in the discharge time series with respect to both modelled meltwater runoff, obtained from RACMO2.3p2, and glacier front position changes over the same period. We find that year-to-year changes in total ice sheet discharge are related to annual front changes (r 2 = 0.59, p = 10-4) and that the annual magnitude of discharge is closely related to cumulative front position changes (r 2 = 0.79), which show a net retreat of > 400 km, or an average retreat of > 2 km at each surveyed glacier. Neither maximum seasonal runoff or annual runoff totals are correlated to annual discharge, which suggests that larger annual quantities of runoff do not relate to increased annual discharge. Discharge and runoff, however, follow similar patterns of seasonal variability with near-coincident periods of acceleration and seasonal maxima. These results suggest that changes in glacier front position drive secular trends in discharge, whereas the impact of runoff is likely limited to the summer months when observed seasonal variations are substantially controlled by the timing of meltwater input.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...