Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835144

RESUMO

Prenatal maternal stress is linked to adverse pregnancy and infant outcomes, including shortened gestation lengths, low birth weights, cardio-metabolic dysfunction, and cognitive and behavioural problems. Stress disrupts the homeostatic milieu of pregnancy by altering inflammatory and neuroendocrine mediators. These stress-induced phenotypic changes can be passed on to the offspring epigenetically. We investigated the effects of gestational chronic variable stress (CVS) in rats using restraint and social isolation stress in the parental F0 generation and its transgenerational transmission across three generations of female offspring (F1-F3). A subset of F1 rats was housed in an enriched environment (EE) to mitigate the adverse effects of CVS. We found that CVS is transmitted across generations and induces inflammatory changes in the uterus. CVS did not alter any gestational lengths or birth weights. However, inflammatory and endocrine markers changed in the uterine tissues of stressed mothers and their offspring, suggesting that stress is transgenerationally transmitted. The F2 offspring reared in EE had increased birth weights, but their uterine gene expression patterns remained comparable to those of stressed animals. Thus, ancestral CVS induced changes transgenerationally in fetal programming of uterine stress markers over three generations of offspring, and EE housing did not mitigate these effects.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Recém-Nascido , Ratos , Feminino , Animais , Peso ao Nascer , Desenvolvimento Fetal , Recém-Nascido de Baixo Peso
2.
Environ Epigenet ; 9(1): dvad006, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162685

RESUMO

Three successive multiple generations of rats were exposed to different toxicants and then bred to the transgenerational F5 generation to assess the impacts of multiple generation different exposures. The current study examines the actions of the agricultural fungicide vinclozolin on the F0 generation, followed by jet fuel hydrocarbon mixture exposure of the F1 generation, and then pesticide dichlorodiphenyltrichloroethane on the F2 generation gestating females. The subsequent F3 and F4 generations and F5 transgenerational generation were obtained and F1-F5 generations examined for male sperm epigenetic alterations and pathology in males and females. Significant impacts on the male sperm differential DNA methylation regions were observed. The F3-F5 generations were similar in ∼50% of the DNA methylation regions. The pathology of each generation was assessed in the testis, ovary, kidney, and prostate, as well as the presence of obesity and tumors. The pathology used a newly developed Deep Learning, artificial intelligence-based histopathology analysis. Observations demonstrated compounded disease impacts in obesity and metabolic parameters, but other pathologies plateaued with smaller increases at the F5 transgenerational generation. Observations demonstrate that multiple generational exposures, which occur in human populations, appear to increase epigenetic impacts and disease susceptibility.

3.
Trends Endocrinol Metab ; 31(7): 478-494, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32521235

RESUMO

The prevalence of obesity and associated diseases has reached pandemic levels. Obesity is often associated with overnutrition and a sedentary lifestyle, but clearly other factors also increase the susceptibility of metabolic disease states. Ancestral and direct exposures to environmental toxicants and altered nutrition have been shown to increase susceptibility for obesity and metabolic dysregulation. Environmental insults can reprogram the epigenome of the germline (sperm and eggs), which transmits the susceptibility for disease to future generations through epigenetic transgenerational inheritance. In this review, we discuss current evidence and molecular mechanisms for epigenetic transgenerational inheritance of obesity susceptibility. Understanding ancestral environmental insults and epigenetic transgenerational impacts on future generations will be critical to fully understand the etiology of obesity and to develop preventative therapy options.


Assuntos
Epigenômica/métodos , Obesidade/genética , Animais , Metilação de DNA/genética , Metilação de DNA/fisiologia , Epigênese Genética/genética , Humanos , Masculino
4.
Dev Biol ; 458(1): 106-119, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31682807

RESUMO

Epigenetic transgenerational inheritance potentially impacts disease etiology, phenotypic variation, and evolution. An increasing number of environmental factors from nutrition to toxicants have been shown to promote the epigenetic transgenerational inheritance of disease. Previous observations have demonstrated that the agricultural fungicide vinclozolin and pesticide DDT (dichlorodiphenyltrichloroethane) induce transgenerational sperm epimutations involving DNA methylation, ncRNA, and histone modifications or retention. These two environmental toxicants were used to investigate the impacts of parent-of-origin outcross on the epigenetic transgenerational inheritance of disease. Male and female rats were collected from a paternal outcross (POC) or a maternal outcross (MOC) F4 generation control and exposure lineages for pathology and epigenetic analysis. This model allows the parental allelic transmission of disease and epimutations to be investigated. There was increased pathology incidence in the MOC F4 generation male prostate, kidney, obesity, and multiple diseases through a maternal allelic transmission. The POC F4 generation female offspring had increased pathology incidence for kidney, obesity and multiple types of diseases through the paternal allelic transmission. Some disease such as testis or ovarian pathology appear to be transmitted through the combined actions of both male and female alleles. Analysis of the F4 generation sperm epigenomes identified differential DNA methylated regions (DMRs) in a genome-wide analysis. Observations demonstrate that DDT and vinclozolin have the potential to promote the epigenetic transgenerational inheritance of disease and sperm epimutations to the outcross F4 generation in a sex specific and exposure specific manner. The parent-of-origin allelic transmission observed appears similar to the process involved with imprinted-like genes.


Assuntos
DDT/toxicidade , Epigênese Genética/genética , Fungicidas Industriais/toxicidade , Doenças dos Genitais Masculinos/genética , Impressão Genômica/genética , Mutação em Linhagem Germinativa , Doenças Renais Císticas/genética , Obesidade/genética , Oxazóis/toxicidade , Praguicidas/toxicidade , Espermatozoides/química , Adipócitos/patologia , Alelos , Animais , Cruzamentos Genéticos , Metilação de DNA , Feminino , Doenças dos Genitais Masculinos/patologia , Código das Histonas , Doenças Renais Císticas/patologia , Masculino , Obesidade/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , RNA não Traduzido/genética , Ratos , Ratos Sprague-Dawley
5.
Adipocyte ; 8(1): 362-378, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31755359

RESUMO

The incidence of obesity has increased dramatically over the past two decades with a prevalence of approximately 40% of the adult population within the United States. The current study examines the potential for transgenerational adipocyte (fat cell) epigenetic alterations. Adipocytes were isolated from the gonadal fat pad of the great-grand offspring F3 generation 1-year old rats ancestrally exposed to DDT (dichlorodiphenyltrichloroethane), atrazine, or vehicle control in order to obtain adipocytes for DNA methylation analysis. Observations indicate that there were differential DNA methylated regions (DMRs) in the adipocytes with the lean or obese phenotypes compared to control normal (non-obese or lean) populations. The comparison of epigenetic alterations indicated that there were substantial overlaps between the different treatment lineage groups for both the lean and obese phenotypes. Novel correlated genes and gene pathways associated with DNA methylation were identified, and may aid in the discovery of potential therapeutic targets for metabolic diseases such as obesity. Observations indicate that ancestral exposures during critical windows of development can induce the epigenetic transgenerational inheritance of DNA methylation changes in adipocytes that ultimately may contribute to an altered metabolic phenotype.


Assuntos
Tecido Adiposo/química , Atrazina/efeitos adversos , DDT/efeitos adversos , Metilação de DNA , Hereditariedade , Obesidade/genética , Magreza/genética , Adipócitos , Tecido Adiposo/efeitos dos fármacos , Animais , Metilação de DNA/efeitos dos fármacos , Modelos Animais de Doenças , Epigênese Genética/efeitos dos fármacos , Feminino , Masculino , Ratos , Ratos Sprague-Dawley
6.
Environ Epigenet ; 5(2): dvz008, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31186947

RESUMO

Dichlorodiphenyltrichloroethane (DDT) has previously been shown to promote the epigenetic transgenerational inheritance of adult onset disease in rats. The current study investigated the potential that sperm epimutation biomarkers can be used to identify ancestral induced transgenerational obesity and associated pathologies. Gestating F0 generational female rats were transiently exposed to DDT during fetal gonadal sex determination, and the incidence of adult-onset pathologies was assessed in the subsequent F1, F2, and F3 generations. In addition, sperm differential DNA methylation regions (DMRs) that were associated with specific pathologies in the transgenerational F3 generation males were investigated. There was an increase of testis disease and early-onset puberty in the F2 generation DDT lineage males. The F3 generation males and females had significant increases in the incidence of obesity and multiple disease. The F3 generation DDT males also had significant increases in testis disease, prostate disease, and late onset puberty. The F3 generation DDT females had increases in ovarian and kidney disease. Epigenetic alterations of the germline are required for the transgenerational inheritance of pathology. Therefore, the F3 generation sperm was collected to examine DMRs for the ancestrally exposed DDT male population. Unique sets of DMRs were associated with late onset puberty, prostate disease, kidney disease, testis disease, obesity, and multiple disease pathologies. Gene associations with the DMR were also identified. The epigenetic DMR signatures identified for these pathologies provide potential biomarkers for transgenerationally inherited disease susceptibility.

7.
Sci Rep ; 9(1): 6372, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31011160

RESUMO

Ancestral environmental exposures to a variety of factors and toxicants have been shown to promote the epigenetic transgenerational inheritance of adult onset disease. One of the most widely used agricultural pesticides worldwide is the herbicide glyphosate (N-(phosphonomethyl)glycine), commonly known as Roundup. There are an increasing number of conflicting reports regarding the direct exposure toxicity (risk) of glyphosate, but no rigorous investigations on the generational actions. The current study using a transient exposure of gestating F0 generation female rats found negligible impacts of glyphosate on the directly exposed F0 generation, or F1 generation offspring pathology. In contrast, dramatic increases in pathologies in the F2 generation grand-offspring, and F3 transgenerational great-grand-offspring were observed. The transgenerational pathologies observed include prostate disease, obesity, kidney disease, ovarian disease, and parturition (birth) abnormalities. Epigenetic analysis of the F1, F2 and F3 generation sperm identified differential DNA methylation regions (DMRs). A number of DMR associated genes were identified and previously shown to be involved in pathologies. Therefore, we propose glyphosate can induce the transgenerational inheritance of disease and germline (e.g. sperm) epimutations. Observations suggest the generational toxicology of glyphosate needs to be considered in the disease etiology of future generations.


Assuntos
Epigênese Genética/efeitos dos fármacos , Glicina/análogos & derivados , Padrões de Herança/genética , Espermatozoides/patologia , Animais , Cromossomos de Mamíferos/genética , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Feminino , Glicina/toxicidade , Padrões de Herança/efeitos dos fármacos , Masculino , Análise de Componente Principal , Ratos Sprague-Dawley , Espermatozoides/efeitos dos fármacos , Testes de Toxicidade , Glifosato
8.
PLoS One ; 13(8): e0202662, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30157260

RESUMO

Exposure to vinclozolin has been shown to induce the epigenetic transgenerational inheritance of increased susceptibility to disease, and to induce transgenerational changes to the epigenome. In the current study, gestating F0 generation rats were exposed to vinclozolin, and the subsequent F1, F2 and transgenerational F3 generations were evaluated for diseases and pathologies. F1 and F2 generation rats exhibited few abnormalities. However, F3 generation rats showed transgenerational increases in testis, prostate, and kidney disease, changes in the age of puberty onset in males, and an increased obesity rate in females. Overall there was an increase in the rate of animals with disease, and in the incidence of animals with multiple diseases. The objective of the current study was to analyze the sperm epigenome of F3 generation rats with specific abnormalities and compare them to rats without those abnormalities, in an effort to find epigenetic biomarkers of transgenerational disease. Unique signatures of differential DNA methylation regions (DMRs) in sperm were found that associated with testis disease, prostate disease and kidney disease. Confounding factors identified were the presence of multiple diseases in the analysis and the limited number of animals without disease. These results further our understanding of the mechanisms governing epigenetic transgenerational inheritance, and may lead in the future to the use of epigenetic biomarkers that will help predict an individual's susceptibility for specific diseases.


Assuntos
Biomarcadores/metabolismo , Epigênese Genética/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Oxazóis/toxicidade , Espermatozoides/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Mapeamento Cromossômico , Cromossomos/genética , Cromossomos/metabolismo , Metilação de DNA , Feminino , Hereditariedade/genética , Nefropatias/etiologia , Nefropatias/genética , Nefropatias/patologia , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Doenças Prostáticas/etiologia , Doenças Prostáticas/genética , Doenças Prostáticas/patologia , Ratos , Ratos Sprague-Dawley , Espermatozoides/metabolismo , Testículo/patologia
9.
PLoS One ; 12(9): e0184306, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28931070

RESUMO

Ancestral environmental exposures to a variety of environmental toxicants and other factors have been shown to promote the epigenetic transgenerational inheritance of adult onset disease. The current study examined the potential transgenerational actions of the herbicide atrazine. Atrazine is one of the most commonly used herbicides in the agricultural industry, in particular with corn and soy crops. Outbred gestating female rats were transiently exposed to a vehicle control or atrazine. The F1 generation offspring were bred to generate the F2 generation and then the F2 generation bred to generate the F3 generation. The F1, F2 and F3 generation control and atrazine lineage rats were aged and various pathologies investigated. The male sperm were collected to investigate DNA methylation differences between the control and atrazine lineage sperm. The F1 generation offspring (directly exposed as a fetus) did not develop disease, but weighed less compared to controls. The F2 generation (grand-offspring) was found to have increased frequency of testis disease and mammary tumors in males and females, early onset puberty in males, and decreased body weight in females compared to controls. The transgenerational F3 generation rats were found to have increased frequency of testis disease, early onset puberty in females, behavioral alterations (motor hyperactivity) and a lean phenotype in males and females. The frequency of multiple diseases was significantly higher in the transgenerational F3 generation atrazine lineage males and females. The transgenerational transmission of disease requires germline (egg or sperm) epigenetic alterations. The sperm differential DNA methylation regions (DMRs), termed epimutations, induced by atrazine were identified in the F1, F2 and F3 generations. Gene associations with the DMRs were identified. For the transgenerational F3 generation sperm, unique sets of DMRs (epimutations) were found to be associated with the lean phenotype or testis disease. These DMRs provide potential biomarkers for transgenerational disease. The etiology of disease appears to be in part due to environmentally induced epigenetic transgenerational inheritance, and epigenetic biomarkers may facilitate the diagnosis of the ancestral exposure and disease susceptibility. Observations indicate that although atrazine does not promote disease in the directly exposed F1 generation, it does have the capacity to promote the epigenetic transgenerational inheritance of disease.


Assuntos
Atrazina/toxicidade , Biomarcadores/metabolismo , Epigênese Genética/efeitos dos fármacos , Herbicidas/toxicidade , Espermatozoides/efeitos dos fármacos , Adipócitos/citologia , Adipócitos/patologia , Animais , Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Metilação de DNA , Feminino , Nefropatias/epidemiologia , Nefropatias/etiologia , Masculino , Doenças Metabólicas/epidemiologia , Doenças Metabólicas/etiologia , Fenótipo , Doenças Prostáticas/epidemiologia , Doenças Prostáticas/etiologia , Ratos , Ratos Sprague-Dawley , Maturidade Sexual/efeitos dos fármacos , Espermatozoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...